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Application to the vibrations of  (CO,),
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The theoreticalquantum description of large amplitude vibrations of systems containing four or
more atoms using orthogonal internal coordinates requires three or more angular coordinates. The
basis commonly used to represent these coordinates is the coupled angular momentum basis. We
show that a direct product angular discrete variable representdadR) can be used
advantageously, particularly for systems with high permutation-inversion symmetry and nonlinear
equilibrium geometry. The DVR permits full symmetry projection and solution by the sequential
diagonalization and truncation method. Application to the dimer of rigid, @®monstrates the
accuracy and efficiency of the approach. 2003 American Institute of Physics.
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I. INTRODUCTION CAM basis functions. In the direct diagonalization approach,
the angular and radial parts are often done using the sequen-
Over the past ten years, there has been great progresstial diagonalization and truncatiofSDT) method*?%2% In
the field of variational calculations of molecular rovibra- this procedure the full angular Hamiltonian matrices in CAM
tional energy levels. Theoretical chemists can now handle thpasis must be diagonalized, then truncated and coupled with
vibrational problems of four-atom systems exactly in full the radial bases to construct the more compact full dimen-
dimension* and even a five-atom system, such assjonal Hamiltonian matrix. However, the SDT cannot be ap-
methané>*®has been tackled. All the bound vibrational lev- plied within the CAM basis itself.
els of some triatomic molecules such ag‘fiand HO* The main problem with the CAM basis is that the num-
have been determined very accurately. The progress is in paer of CAM basis may be very large, even for “three-angle”
due to the growing computer power, but more importantlysystems. Since the CAM basis functions are delocalized in
the development of computational algorithms for simplifiedconfiguration space, a very large basis may be required if the
kinetic energy operators and Hamiltonian evaluation, moreyctual eigenstates are localized in the angles. This is common
efficient basis functions and methods of solution inClUdingsince the wave functions of the lower energy vibrational
both iterative and basis reduction methods. states of typical strongly bound tetra-atomic systems are very
For tetra-atomic systems with orthogonal internal coor-ocalized in space. Due to the nondirect product nature of the
dinates, a coupled angular moment(@AM) basis(spheri-  CAM basis it is not feasible to contract the basis beyond the
cal harmonicy*®*%*>~**{yhich is a nondirect product ba- symmetry reduction.
sis, is normally used for the angular part of the basis. The |n theory, direct product representations in each coordi-
CAM angular basis can be combined with either discretehate have several advantages over nondirect product repre-
variable representationl®VR)*** or finite basis representa- sentations such as the CAM b&sis*®27since an optimal
tions (FBR)?! for the radial coordinates. The major advan- DVR, such as potential optimized D\?ﬁng(pODVR), can
tage of using CAM bases is that the kinetic energy matrixpe found for each coordinate. This permits both simple
elements are quite simple and all exact matrix elements argamiltonian evaluation and efficient matrix vector products
finite despite of the singularity in the kinetic energy operator,n jterative solution methods. The sequential diagonalization
The CAM basis can be easily adapted to the permutatiogng truncatiorfSDT) techniques can be applied and provides
inversion(PIl) symmetries of the system. a compact multidimensional correlated basis for direct diago-
To find the eigenpairs with the CAM basis, either anpgjization. For these reasons, there has been a growing inter-
iterative (Lanczo$ diagonalizatiof? or direct(Householder est of using direct product DVR for larger polyatomic
diagonalization method can be used. To evaluate the potegystemg._,ll,le,z?
tial matrix by quadrature or the action of the Hamiltonian on However, direct product angular DV®PA-DVR) have
a vector in the CAM basis, a_psel%qg-zsggictral type transforseyeral potential disadvantages: The size of the direct prod-
mation to a grid represgntan%ﬁj_' 7 lis usually em- ot pasis scales poorly with dimension; symmetries may be
ployed in the iterative diagonalization. For accuracy, thisyifficult to handle; and, perhaps most serious, multidimen-
transformation is not unitary with more grid points than gon4) pPA-DVRS cannot be constructed to satisfy the exact
wave function boundary conditions at all the singular points
dElectronic mail: seungl@uchicago.edu of the effective kinetic energy operatofge., where the
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m?/sir? 6 type terms become singujaSince the appropriate plex to sample the singular region of the Hamiltonian. In this
boundary conditions change depending on the angular mgvork, we monitor the convergence of the DPA-DVR calcu-
mentum projection, no single DVR can be chosen to satisfyations for such problematic situations. Although the DPA-
all boundary conditions. This leads to “infinite” quadrature DVR approach has been used for systems with four or more
error for a direct product Legendre polynomial DVR, for atoms, the accuracy of the method has not been looked at
example, although the eigenvalues of the kinetic energy opelosely beyond model systen$(4) A variational solution of
erator eventually converg®since the effective potentials the (CQ), using the CAM basis is availabfefor checking
(1/sir? ) are repulsive. the accuracy and efficiency of the new approach.

The purpose of this paper is to address the issues asso- The remainder of the paper is organized in five sections.
ciated with the above-mentioned problems in the DPA-DVRIN Sec. I, we present the theory for the DPA-DVR approach
approach for tetra-atomic systems, namely the symmetry rdor the vibrational problem of (C§),. The algorithm for the
duction, convergence behavior, and solution by sequentiglymmetry-adapted DPA-DVR basis is given in Sec. Ill and
reduction. Specifically, we present an algorithm for the symthe numerical details of the calculation in Sec. IV. We discuss
metry adaptation of a DPA-DVR which may drastically re- the performance of direct product DVR approach for (GO
duce the number of DVR functions. This allows direct diago-in Sec. V and the conclusion in Sec. VI.
nalization for larger systems with high Pl symmetry. The
number of DVR functions after the symmetrization will be Il THEORY
comparable to the number of symmetry-adapted CAM basis’
functions for a given symmetry block even without the use  The direct product angular DVRDPA-DVR) approach
of a PODVR. If a PODVR basis is appropriate, it could alsofor tetra-atomic systems has been described by several
be symmetrized through the procedure below. The use dduthors>?”*?In this section, we define the method briefly.
symmetry other than parity for the direct product DVRs for The coupled angular momentum operatkinetic energy
the coupled angular momentum operator for three anglefor two coupled rotorgrigid linear moleculesis
(four atomg has not been reported previously. s ny ~ A,

The symmetry adaptation of the angular DVR is impor- K=B4j1+Bajo+B(J=]1—]2)% @)
tant since without it the direct product DVR approach maYWhere]i is the angular momentum operator of rotpB; is
be less efficient than the symmetry-adapted CAM basis evefhe corresponding rotational constadtis the total angular
if the SDT procedure is used. Although more DVR functionsmomentum, andB is the rotational constant of the whole
may be required than the CAM basis for convergence due t@ystem. ForJ=0, Eq. (1) represents the angular part of the
the boundary condition problem, the symmetry-adapted dikinetic energy operator for the vibrational Hamiltonian of
rect product DVR approach leads to a mumhallerthree-  tetra-atomic systems. The orientation of the two rotors is

dimensional angular matrix after the SDT procedure. Theyiven by the two bending angles, with respect to the body-
symmetry adaptation also has the additional advantage thgked z axis, 6;, and torsion angleg.

the assignment of symmetry species to each vibrational state e operatorK can be written explicitly as(i=1

is obviously simplified. J=0
In the present work, we calculated the vibrational ener- | - -
gies of the CQ dimer, (CQ),, using a fully symmetry- K=(B+By)jiot (B+B2)j%

adapted direct product DVR basis. With its monomers held
rigid, the vibrational Hamiltonian of (C§), is essentially B+Bl+ B+B
four dimensional §=0). But the angular part of the Hamil- 1-x2  1-%5
tonian is identical to that of tetra-atomic system and we can

—2Bj2+ B(il+jz+ +i102.)s

apply the present approach to the tetra-atomic system. There )

are several motivations to choose (§9as a test system: where

(1) It possesses a very high symmetr§.) and demon- X = COSH: ®)
. i i

strates the symmetry adaptation of the angular DVAR.It

demonstrates that the DPA-DVR is advantageous even for -, d 5 0

this extremely floppy system for which the CAM functions ~ Jio=~ Txi(l_xi )5_)(i* 4)

are reasonably good. Due to the floppiness of the system, a

PODVR approach for the angular coordinates may not be = —_j i 5)

appropriate(3) The floppiness of system will allow the com- z ap’

2X1X5

P P - ~ X2 ~ X1 o
- Po(d)+2| F(xy) ——2= + F(xp) ——— | P
JiJ2, )1 )2 A 20d)+ ( (Xq) 1_X§+ (X2) 1_X%) 1(9)

X1X2

== xé)) s ©

“ ~ 1
+| 2F(Xp)F(X2) — 5
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TABLE I. Transformation of angular coordinates and the DVR functions
under the actions of Pl symmetry operationgXf group.

. 5 0, 9, ¢ PlaBy)
= E* 0, 0, —¢ laBy)
(12(39 T 6, T 0, ¢ laBy)
(13)(24) m— 0, m— 0, ¢ |Bay)

(12 =6, 0, G+ [aBy*)

FIG. 1. The Jacobi coordinates for the (9¢.

converge to the correct values relatively fast. This is because

In the CAM basis all kinetic energy matrix elements arethe effectlve potential, 1/(&)(,)' IS repulsye and f‘?fces the

known analytically and only the last operator in E@) a_mplltude of thg wave functions to_zero in the singular re-

couples different basis functions. In the DPA-DVR, however,10"- However, if the system potential has a strong tendency
to make the system sample the singularear region, the

the last operator is not analytic and is not numerically Her- . .
mitian unless written in the form of Eq6). The Hermitian convergence becomes slow. This prevents one from using the

B s . DPA-DVR approach for linear systems, such as HCCH. In
operatorspP;’s andF's in Eq. (6) are defined as Sec. V, we will come back to this issue and discuss the con-
vergence of the calculations for the vibrational energies of

- a i
Pi(¢)=i sin¢£+ IEcos¢>, (7) (COy),.

- 9? d
P,(¢$)=cos¢ e sin¢>%, (8)  lll. SYMMETRY-ADAPTED DVR
J
Symmetry adaptation of basis functions based on

~ o d i permutation-inversion(Pl) symmetry have been widely
F(x)=iv1=X X 2 J1-x2 ©  giscussed®The PI symmetry of the (C§, can be char-
- o _ acterized by using th&,5 group®®’ The group has eight
Note that the Hamiltonian as written in Eq&)—(9) consists  nondegenerate irreducible representations and two doubly
of sums of products of Hermitian operators only, which Sim'degenerate irreducible representations.
plifies the use of a DVR. As discussed by Carringtéh® there are two ways to

For the CQ dimer, we use Jacobi coordinates, with rigid construct symmetry_adapted DVR bases. The‘ﬂ@mme-
monomers. The vectdR _connects the center_ of masses of trizes the original basis function§~BR basi$ and the
the two monomers and lies along the body-fizeais (see  symmetry-adapted DVR functions are then defined sepa-
Fig. 1). The four-dimensional vibrational Hamiltonian can be rately for each symmetry block by diagonalizing an appro-

written as priate matrix of the coordinate operator. This will not work if
72 the symmetry operations generate a nondirect product basis
H=— — — +K+V, (10  from the original basis. This occurs for tetra-atomic systems
21 9R? since the symmetry operations involve changes in more than

one coordinate. The second approach, which we use here, is
more general. We take the linear combinations of primitive
DVR functions to generate eigenfunctions of each symmetry
peration. Although this is a more natural choice, the struc-
ure of the Hamiltonian matrix becomes more complicated.
For the G5 group, the actions of the symmetry opera-
tions on the body-fixed coordinates have been gifenthe
IN,), syster] by Tennysoret al“142and are shown in Table
I. There the numbers refer to the oxygen nuclei and the op-
eration(ab) means the permutation of oxygen nuclei a and b.
For details of the Pl operations listed in Table I, please refer
1 mo to Ref. 37. Table | also shows the actions of the Pl operations
E?/)jl(xl)?/)jz(xz)e , (1) onthe DPA-DVR basisay)=|a)| B)|7), wherel), |8), and
|y) represent the DVR functions fat,, 6,, and ¢ localized
where7; is a normalized Legendre polynomial. In the Ap- at DVR pointsa, g, and y, respectively. Note that i&, 3,
pendix, we describe the details of DVR used in the preserand y are DVR points,7— a(=a), 7—B(=8), —y(=7)
work and evaluations of matrix elements in DPA-DVR. andy+m(=v*) should also be the DVR points to fully adapt
As noted by Daiet al,*® although the choice of Leg- the symmetry of (CG),. Our DVR basis functions satisfy
endre DVR leads to potentially infinite quadrature errors athese constrainté&see Appendix
the end points X=*=1) while evaluating the matrix ele- The symmetry-adapted DVR basis is obtained by se-
ments ofji/(l—xz) for m,#0, the eigenvalues of?> do  quentially incorporating the transformation properties of

whereV is the potential of the system atlis the length of
the vectorR. In the present work, we used thed initio
surface of Bukowsket al23 for V.

For the basis functions, we used a potential optimize
DVR (PODVR) in the R coordinate. The construction of the
PODVR basis folR was described previousty.For the an-
gular bases, we used the direct product of Legendr
DVRs*** for 6, and #,, and a Fourier(plane wave
DVR33>35for the torsion angleb. Thus the DVR is based on
the direct product FBR functions
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DVR functions under Pl operations listed in Table I. To do TABLE Il. Parameter settings for singly and doubly degenerate states.
this we use the principle that P is a symmetry operation

Py r s | m p
such thatP|a) = =|b), then
Al 0/1 0 0 0
Ay 0/1 0 1 1
‘p==+1)= —1)P B 0/1 0 1 0
laip=+1)=Np(|a) +(~1)?b)), a2 & on 0 ! 0
E* 0/1 1

is the symmetry adapted function with respecPtoN; is a
normalization constant. This process can be repeated for

each symmetry operation sequentially. Since symmetry op-

erations on a DVR function replace coordinate val(&se fixed zaxis. The symmetry-adapted basis for this operation is
Table ), all unique symmetry-adapted functions can be gengiven as

erated with reduced ranges of the coordinates. The results of

the sequential generation of symmetry-adapted DPA-DVR  |@B¥:isIM=Nn(|aBy;sh+(=1)"|Bay:sl)),

functions forG¢ are given below, along with normalization 1 17
constants and the appropriate coordinate range. The symme- _— /—,
try numberss, |, m, p, are 0 or 1 and together generate all 2(1+ 9j4))
symmetrized functions. — . .
A. E*: The adaptation of inversion operation can be ~¢=F 1 a<ao, a<p if a>ao, (18)
done easgily and it is a well known procedure for tetra-atomioyhere| | = max(a,a).
systems:® Namely, D. (12): This operation affects one of the two monomers
and reduce the number of DVR points énto roughly one
‘§ =N (=15 @B, quarter of the original r_1ur_nber of points. The corresponding
|@By:9)=Nul|aBy)+ (=1 apy) (19 symmetry-adapted basis is constructed as
F |aBy;sImp)=Ny(|aBy;sIm)
Ne=N2ars,) +(=DPlaBy*;sim)),
(19
N / 1
v=0. (14 PN 2(1+ OaaOyy)
Osy<aul2 (a<ay if y=mu/2). (20

Note that thes-function in the normalization constant also
affects the basis function for= due to the periodic bound- In our implementation of the Fourier DVR fap, only the
ary condition(i.e., y=v for y=m). The above-mentioned even numbers of DVR points forp is allowed for
linear combination leads to DVRs based ftosm¢} and  |aBy;slmp). This is becausg¢aSy*;sIm) does not exist
{sinm¢} for the even and odd parity states, respectively. for y=0 (i.e., y* =) if an odd number of DVR points is

B. (12)(34): This operation exchanges two oxygen atomsused(see Appendix However, both odd and even numbers
that belong to the same GOmonomer. In this case, of DVR points in¢ are possible fofaB7y;sIm). In Table II,
symmetry-adapted basis function is given as we summarize the effects of settings for parameters

(s,I,m,p). For doubly degenerate states, paramateandp
- are not relevant.
laBy;sly=Ni(laByis)+(—1)'[aBy;s)),
(15

1 IV. NUMERICAL DETAILS
NN 2T 55

The evaluations of Hamiltonian matrix elements in
symmetry-adapted angular bases could be quite complicated.
(16) We found that the following three-step procedure is easy to
implement in the programming(l) For each symmetry
block, we first determine the right combinations of DVR
where « refers tonr/2 hereafter. In Eq(16), the range of3  points,(«,8,7y), that satisfy the restrictions on the rangenof
is halved. Note that=0 leads to singly degenerate statesg, andy as described in Sec. Il{2) Expand the symmetry-
wheread =1 leads to doubly degenerate states. No furtheadapted basis functions, E¢L9), into 16 primitive basis
symmetry adaption is possible for the doubly degeneratéunctions,|aBy), and evaluate the matrix elements in the
states. Therefore, the symmetry adaptations described belguvimitive basis. The matrix elements in primitive basis are
are applied only for the singly degenerate states. summed up to obtain the matrix element in symmetry-
C. (13)(24): This operation exchanges the roles of two adapted basis. In other words, we write the matrix elements
CO, monomers and changes the orientation of the bodyin symmetry-adapted basis as

as<p if a<ay, a<pB if a>ay,
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(a'B'y';simpH|aBy;sImp)
= NIN/NGNGNNNGNG{ (e’ By [H]aBy)+(e’ B'Y [H]aBy)+(a’ By [H[aBy) -]
+(—1)°%[(a'B'Y |H|aBy)+ (e’ By |H|afy)+(a’ B’y |H[aBy) -]
+(~=1)'X[(a’B'y'[H|aBy)+(a' By |HaBy)+(a’' By |H|aBy) ]
e (— 1) 0 Y A aBy) (B 'y [ H|afy)+ (B ey * [HaBy)+- 1) (21)

There are total 256 terms in E(R1). However, we have to cm 1, N3D=200, E3D=50 cm ! were appropriate to con-
note that matrix elements in primitive basis with the sameverge the lowest 10 vibrational states of each symmetry
form of prefactor(i.e., terms in a given square brackete  block. The typical size of the 4D Hamiltonian matrix in trun-
the same due to the symmetry and there are only 16 uniqueated basis is approximately 2002000 for each symmetry.
matrix elements in primitive basis. Therefore, this procedure  Finally, we make a brief comment on the case where the
involves 16, instead of 256, evaluations of matrix elementgotal angular momenturd>0. For J#0, the kinetic energy
in the primitive basis and it does not consume much CPlperatorK in Eq. (1) will have additional terms oB[J?
time. The evaluations of the matrix elements in the primitive—2(:]le2>(+jy]12y+3z]122)], where j1,=j1+],. Assum-
basis are performed as described in Appendix. At this stagéng that we use symmetric-top eigenfunctions as basis for the
the normalization constants are not considered and some @f/erall rotation, the first and the last term are diagonakin
the terms in the expansion may be identical for certain valugprojection of J on the body-fixedz axis), whereasl,j 12x
of (@,8,7). (3) Finally, an appropriate normalization factor is 3 j . (Coriolis coupling leads to terms in off-diagonal in
multiplied to the result obtained in step 2. The normalizationk . The evaluations of matrix elements for these extra terms
factor will take care of the duplicated terms in step 2. in DPA-DVR basis would be more difficult than in the
In the present work, the Hamiltonian matrix was diago-coupled angular momentuf@AM) basis simply because the
nalized using thg sequen.t|al dlagonahzatlo'n and' truncatiogs A pasis are eigenfunctions d,, jiz- andj,,. How-
(SDD mgthod. First, we diagonalized two-dlmens!o@) ever, the general procedure for diagonalizing the Hamil-
Hamiltonian matrix for6, and 6, at each DVR point irR  onian matrix would be the same: Diagonalize e#ehlock
and ¢. We found that including all the terms that are diago'separately as described above; keep a certain number of
nalinRandé, i.e., the first and second terms in E@), the  states for eacK-block; transform off-diagonak-blocks ac-
third term in Eq.(6) and the potentiaV in the 2D matrix  cording to the retained states; and finally diagonalize the
leads to the fastest convergence. Once the 2D matrix is diransformed Hamiltonian. Alternatively, the Coriolis cou-

agonalized, a maximum N2D number of states with energiepling terms may be included by perturbation theory.
less than E2D are retained. These states coupled with the

DVR basis in¢ are used to construct three-dimensiof&i))

angular Hamiltonian matrix at each DVR point® In the V. RESULTS AND DISCUSSION
3D matrix, the third term in Eq(2), the first and second
terms in Eq.(6) are included. The 3D Hamiltonian matrices
are diagonalized and a maximum N3D number of states wit
energies less than E3D are retained at each DVR poiRt in
The final 4D matrix is constructed by adding the first termin ~ I'vip=2Ag+A,+B,. (22)

Eqg. (10) and then diagonalized to obtain the vibrational eN-gy comparing the character tables ®f;, and G,s, we can

ergies and wave functions of (GI3. Note that we can also  inq that each vibrational normal mode can be represented as

apply SDT to thed; and 9, parts without the loss of accu- 5 gjirect sum of two singly degenerate states and one doubly
racy if the 2D matrix diagonalization become time consUM-gegenerate state, i.e.

ing, although this would treat the equivalenhtand 6, coor-

The CG dimer hasC,, equilibrium structure(slipped
arallel, ;= 6,=59°, $=0°, see Fig. 2and there are four
intermolecular vibrational normal modés?

dinates differently. FA9=AI@B§@E+
The reduced masg=21.994 914 63 amu and the mono- o 3
mer rotational constanB;=B,=0.390219 027 cm' were Ia,=AL©B; ®E",

used in the calculations. Throughout the calculations, thir-
teen PODVR points were used fBrcoordinate that are ob-
tained from 100 Sinc DVR functions distributed in the range Ty =A} @B GE".

of [2.0,7.0 A. For the angular basis, we used 30 Fourier w2 !

DVR points in ¢, but the symmetry adaptation reduces thePhysically, this means that there are four nonsuperimposible
number of DVR points to 8 fos=0 and 7 fors=1 calcu-  structures for (C@), (see Fig. 2 If the barriers between
lations, respectively, for singly degenerate states. In the casbese structures are sufficiently high, all four states that con-
of bending coordinates}, up to 45 DVR points were used. stitute each vibrational normal mode are degenerate. In the
For the SDT parameters, we found that N2B0, E2D=500 case of (CQ),, however, these barriers are not high enough

Ig,=A; ©B; 9E, @3
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180 . q T of angular basis is used in the DPA-DVR approach, we were
able to achieve a high accuracy in the calculations. With
150 i N,=45, the energies of 65 states out of total 80 states re-
ported in Table Il differ by less than 0.05 crhfrom those
120 & . of CAM calculations and 53 of them are within 0.02 ¢thn
- Given the fact that (C§), is extremely floppy complex, the
e number of DVR points needed to achieve the level of accu-
§ 0r p racy shown in Table Il is relatively small, which indicates
= the good performance of DPA-DVR basis for the coupled
60 £ 4 angular momentum operator. Note that convergence of cal-
culations with respect tall other parameters are achieved
30 L i within 0.01 cm* for all states listed in Table Ill. Because

CAM basis functions are delocalized in configuration space,
they are, in fact, good choices for the van der Waals com-
0 1 I\ 1] 1 1 - - . . . .
0 30 60 90 120 150 180 ple>$es. This implies that the d|fference in the size of angulqr
o, (/degree) basis between the CAM basis and contracted DVR basis
would be greater for more strongly bound systems where the
FIG. 2. A two-dimensional contour plot of the (G2 potential energy  CAM basis becomes less efficient.
surface of Bukowslet al. (Ref. 33 in 6, and 6,. For a given value of AIthough the overall performance of DPA-DVR basis is
(60,,6,), the potential energy is minimized with respectRaand ¢. The I f d th P h
spacing between lines are 50 chstarting at—50 cri . The potential has excellent, we found there are a few states that converge
the minimum at—484.0 cni™. rather slowly compared to other states. These states are
marked with asterisks in Table Ill. They are the states that

are not converged within 0.1 cm with N,=45, although

and moderate vibrational excitation allows the dimer havehey are converging to the correct values. These slow-
enough energy to penetrate the barrier. Therefore, each gonverging states are found onlyAy andB; states, but we
brational level is split into four sublevelgunneling split-  could not see any correlation between the convergence and
ting). It should be noted, however, thaC®0,), is com-  the symmetry. In fact, the symmetry requires different loca-
posed of all boson atoms, which means that only the statetions of nodal surfaces foA; and B, states:B, at
with A, symmetry will show up in the real spectrum due to ¢==m/2, A, at ¢==+m/2, and6,=6,, B, at $=0, A, at
the spln statistics. For different combinations of isotopes$=0, andé#;= 6,. On the other hand, we can speculate that
states with other symmetries will also be allowed. the nature of these slowly converging states is related to the
In Table 1ll we report the energies of lowest 10 vibra- fact that the DPA-DVR approach is not efficient for the states
tional states of (Cg), for singly degenerate states calculatedthat sample the singular region. In order to confirm this
by the methods described in the previous sections. For all thepeculation, we analyzed the wave functions of slow-
DVR calculations reported in Table I, the same DVR andconverging states.
SDT parameters are uséske Sec. |Yexcept for the number In Fig. 3, we plot the two-dimensional slices of the wave
of DVR points in 6. Note that the number of DVR points in functions in #; and 8, coordinates for some of the states
6 listed in Table Il is referring to the number of primitive marked with asterisks in Table lll. They are the tel@}
basis functions before the symmetry adaptation. It can bstate[Fig. 3(a)], eighthA, state[Fig. 3(b)], ninth B, state
seen from Table Ill that two singly degenerate symmetry{Fig. 3(c)] and thirdA, state[Fig. 3(d)]. For these plots, the
blocks listed in the same row have similar energies and theiR and ¢ coordinates are fixed at the value where the wave
belong to the same vibrational normal mode symmgfy.  functions are near the maximum. The wave function of tenth
(23)]. For the ground states, the tunneling splitting is notA, state is similar to Fig. ®) and wave functions of sixth
observed and the ground-state energies are the Saithen and ninthA, states are similar to Fig.(§). Since the wave
0.01 cm?') for those symmetry pairs, i.e.,A{ ,B;), function plots in Fig. 3 are reduced dimensional slices of the
(BI ,A2+), etc. four-dimensional wave functions, we have to keep in mind
In Table 1, we report the convergence behavior of thethat they only provide us part of the information, neverthe-
lowest 10 vibrational states for each symmetry block withless important, about the vibrational motions of the corre-
respect to the number of DVR points &t We compare the sponding states even though they represent the wave func-
results from the present work with those from the previoudions near the maximum amplitude. In fact, we found that
work® where CAM bases were used. The CAM basis calcusmall changes in thR coordinate can result in substantially
lations are converged within 0.01 ¢th In the CAM basis  different two-dimensional plots i#; and 6,, especially for
calculations, roughly 900 angular bases were used for eadhe states with higher excitations.
symmetry and the 3D angular Hamiltonian matrices were  We first note that the wave functions plotted in Fig. 3
diagonalized in single step at each PODVR poinRmnd have small amplitude around the global minimum, the
truncated to construct the 4D Hamiltonian matrix. In theslipped parallel structure 6= 6,=59°). The eighthA;
present work, the DPA-DVR with SDT leads to no more thanstate[Fig. 3(b)] and the thirdA; state[Fig. 3(d)] even have
400 angular basefruncated 2D basis i coupled with a node a9, = 6,. The amplitudes of wave functions for the
Fourier DVR in ¢). Although a substantially smaller number other two states are also pushed away from the global mini-
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TABLE lIl. Convergence of DVR calculations with respect to the number of DVR pointsfor the vibrational states of (C{, . Exgg refers to the energies
obtained using CAM basiRef. 31). The states that are not converged within 0.1 &mith N,=45 are marked with asterisks.

EDVR_ EFBR EDVR_ EFBR
Symmetry Ear Ny,=33 Ny=37 N,=41 Ny=45 Symmetry Egr Ny=33 N,=37 Ny=41 N,= 45
A —392.38 0.00 0.00 0.00 0.00 B, —392.38 0.00 0.00 0.00 0.00
—362.93 0.00 0.00 0.00 0.00 —362.93 0.00 0.00 0.00 0.00
—351.54 —0.01 0.00 0.00 0.00 —351.22 0.00 0.00 0.00 0.00
—348.03 0.00 0.00 0.00 0.00 —347.92 0.00 0.00 0.00 0.00
—346.06 —0.03 —0.02 —0.02 -0.01 —343.80 —0.05 —0.04 —0.03 —0.02
—338.44 —-0.03 —-0.03 —-0.02 —-0.02 —332.44 -0.17 -0.13 -0.11 —-0.08
—326.37 —0.02 —0.02 —-0.02 —0.02 —323.58 —0.04 —0.03 —0.02 -0.01
—323.68 0.00 0.00 0.00 0.00 —321.67 —-0.09 —-0.07 —-0.05 —-0.04
—317.96 —0.02 —0.02 —-0.02 —0.02 —312.45 —0.08 —0.05 —0.04 —0.03
—316.69 —0.02 —0.01 —0.01 -0.01 —311.36 —0.30 -0.24 -0.19 —0.15°
By —372.69 0.00 0.00 0.00 0.00 A —372.69 0.00 0.00 0.00 0.00
—353.36 —0.01 —0.01 —0.01 —0.01 —353.08 -0.01 —0.01 0.00 0.00
—345.02 —0.05 —0.04 —0.03 —-0.02 —340.76 —-0.10 —0.08 —0.06 —0.05
—334.12 —0.02 —0.02 —0.02 —0.02 —331.25 0.00 0.00 0.00 0.00
—331.13 0.00 0.00 0.00 0.00 —327.63 -0.17 -0.13 —-0.10 —0.08
—323.55 —0.01 -0.01 -0.01 -0.01 —320.39 —-0.15 -0.12 —0.09 —0.08
—319.41 —-0.02 -0.01 -0.01 —-0.01 —316.34 —-0.03 —-0.02 —-0.02 -0.01
—314.87 —0.04 —0.04 —0.04 —0.04 —308.21 —-0.26 -0.20 —0.16 -0.12
—309.87 —0.02 -0.01 -0.01 -0.01 —302.34 —0.09 —0.06 —0.05 —0.04
—303.44 —0.04 —-0.04 —0.04 —-0.03 —300.13 —-0.27 -0.21 -0.17 -0.14
Al —369.76 0.00 0.00 0.00 0.00 B, —369.76 0.00 0.00 0.00 0.00
—342.47 0.00 0.00 0.00 0.00 —342.54 0.00 0.00 0.00 0.00
—331.37 0.00 0.00 0.00 0.00 —333.37 -0.13 —-0.10 —0.08 —0.06
—327.24 0.00 0.00 0.00 0.00 —328.40 —0.08 —0.06 —-0.05 —0.03
—323.81 0.00 0.00 0.00 0.00 —326.14 —0.05 —0.04 —0.03 —0.02
—312.22 —-0.03 -0.03 —0.03 —-0.02 —318.98 -0.18 -0.14 -0.11 —0.08
—305.47 0.00 0.00 0.00 0.00 —307.17 —-0.20 -0.15 -0.11 —0.09
—300.65 -0.01 -0.01 -0.01 -0.01 —305.26 —-0.03 —-0.02 —-0.02 -0.01
—293.71 -0.01 -0.01 -0.01 0.00 —299.81 —0.45 -0.34 -0.26 —-0.20°
—289.91 —0.07 —0.07 —0.06 —0.06 —296.51 —0.04 —0.03 —0.03 —0.02
By —351.37 0.00 0.00 0.00 0.00 A —351.37 0.00 0.00 0.00 0.00
—334.27 0.00 0.00 0.00 0.00 —335.55 —-0.07 —0.06 -0.04 —-0.03
—321.60 —0.02 -0.01 -0.01 -0.01 —327.90 -0.25 —-0.19 -0.15 -0.1Z
—312.16 0.00 0.00 0.00 0.00 —314.23 -0.21 —0.16 -0.13 -0.10
—306.71 —-0.02 —-0.02 —-0.02 —-0.02 —312.00 0.00 0.00 0.00 0.00
—299.79 —0.03 —0.03 —0.02 —0.02 —303.96 —0.40 -0.31 -0.24 -0.18°
—298.75 —-0.01 -0.01 -0.01 —-0.01 —302.71 —-0.01 0.00 0.00 0.00
—287.21 —0.05 —0.04 —0.03 —-0.03 —293.94 —-0.07 —0.05 —0.04 —0.03
—283.10 —0.03 —0.03 —0.02 —0.02 —291.27 -0.47 —0.36 —0.28 -0.21*
—280.32 —0.05 —0.05 —0.05 —0.05 —284.24 -0.11 —0.08 —0.06 —0.05

mum structure. The characteristic vibrational motion associhave errors less than 0.1% with,=45. The presence of
ated with Figs. 8) and 3b) is the geared in-plane bending states sampling the singular region decreases the efficiency
motion, which changes the structure of complex from theof the DVR approach since we have to use more DVR func-
slipped parallel to the T-shape. Strictly in-plane motion is,tions, but the impact of such states is drastically reduced by
however, not allowed i\, andB; states[Figs. 3c) and  using the symmetry-adapted DVR basis. For typical nonlin-
3(d)] since they have node gt=0°. But, more importantly, ear tetra-atomigqor large) molecules, the probabilities to
all four states plotted in Fig. 3 have non-negligible probabil-have linear structures are much lower than what we saw in
ity to have the structure close to the T-shape=0 andf, the (CGQ), system unless the molecule is highly excited.
= /2 (or vice versy where the singularity occurs. In fact, Therefore, the convergence problem associated with the sin-
the tilted T-shaped structure is dominant for the niBth  gularity in the DPA-DVR approach should be less important
state and the third\, state. for nonlinear tetra-atomic systems and the DPA-DVR basis
These observations confirm that the increasing probabilshould be a valuable alternative to the CAM basis up to
ity for an eigenstate to sample the singular regigh 6r  fairly high internal energy.
0,~0°) leads to the slower convergence with respect to the Finally, we make a brief comment on the performance of
number of DVR points inf. However, for (CQ), system the symmetry-adapted DPA-DVR/SDT compared to the
such problematic states do converge to the correct valukanczos based iterative method. One promising way to in-
without significant deterioration in the accuracy of calcula-corporate the symmetry of the system into the Lanczos
tion. As shown in Table 1, even the slow-converging statesmethod is so called symmetry-adapted Lanczos method of
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Carrington et al*® and Guoet al** In symmetry-adapted matrix to be diagonalized. It is also trivial to calculate the
Lanczos, Lanczos vectors are symmetrized throughout thpotential matrix elements in the DVR. The DPA-DVR is par-
Lanczos iteration instead of symmetrizing the basis. If ondicularly useful for a potential that has very localized minima
uses the standard partial summation techrfiliéor the in angles since the CAM basis is delocalized, requiring a
matrix-vector product, the total operation count for singlelarge basis. However, the DPA-DVR basis suffers from the
matrix-vector product is roughly10xX N,(N)°N,] for the  poor scaling with respect to the dimensionality and boundary
Hamiltonian in Eqs.(2)—(9) with DPA-DVR basis. For the condition problems. This limits the possibility of using the

symmetry-adapted DVR/SDT discussed in the present workgirect diagonalization for tetra-atomic systems, especially for
the cost of calculation is dominated by the final diagonalizastates with large amplitude motions.

tion of the 4D matl’ix, which scales as (N3r)3 Since the In the present Work’ we present a Simp|e a|gorithm to

size of 4D matrix is usually 20002000 in this work, the  construct the fully symmetry-adapted DPA-DVR basis func-
total cost for the direct diagonalization of all symmetry tjons for the couple angular momentum operator. An efficient
blocks is roughly a factor of @'afger than the cost of @ \yay to evaluate the matrix elements in symmetry-adapted
single matrix-vector product wittN,=45. Since there are padis is also described. The major advantage of using
other costs that affect the overall performance, it is not triViaIsymmetry-adapted basis is to reduce the required number of

to make a direct comparison between the two methods. BySy/p pagis functions drastically. By symmetrization, the im-

Fhe Idlfferenlcg In cost ?etwee? the”two methodt;s,l fOI; Calﬁlulatbact of poor scaling is lowered and it is possible to use a
Ing lowest stgtes of (CA for a symmetry. OCKS Wi DPA-DVR even where a PODVR approach is inappropriate.
be small assuming that roughly 10—20 matrix-vector prod-

ucts are needed for each state in symmetry-adapted Lanczcg—she present algorithm is applied to the calculations of vibra-
However, whenN, (the slowest converging parametén- fonal energies of (C§),. By using the symmetry-adapted

creases the cost of symmetry-adapted Lanczos is likel t(t))asis and SDT procedure, we were able to achieve high ac-
y Y P y curacy with considerablymore than a factor of )2smaller

increase more than that of symmetry-adapted DVR/SDT, be- mber of anaular basis functions compared to the CAM
cause the overall cost for the direct diagonalization with SD um ngu SIS functl P . .
basis. The difference in the size of angular matrix to be di-

N nqt very sensitive -td\lof’% whereas .the cogt of single agonalized would be greater for more strongly bound system
matrix-vector product is directly proportional tdj. where the CAM basis becomes less efficient.

We also discuss the issue associated with the improper
boundary condition of DPA-DVR approach. As expected, the

The use of direct product angular DMRPA-DVR) ba-  states that sample the singular regions were found to con-
sis rather than the coupled angular moment@AM) bases verge rather slowly compared to other states. But they do
for systems with more than four atoms has several advarzonverge to the correct values and they are reasonably accu-
tages. The basis can be easily contracted via sequential diate(errors less than 0.1p4vith a moderate number of DVR
agonalization and truncatiqi®DT) to lead to a much smaller functions. For a given accuracy, the required number of DVR

VI. CONCLUSION
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functions is larger than what it would be if we do not have Therefore, the matrix elements fér(x) in the 7 involve

such problematic states, but the symmetry adaptation and te7,|1/\/1—x?|73) which can be evaluated very accurately

SDT method reduce the impact of increasing DVR functionsby using Gauss—Chebychev quadrature of first kind. The ma-

due to those slowly converging states. trix elements for the operator®,(¢$) and P,(¢) in the
on( ) basis are given as
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APPENDIX: DVR BASIS AND MATRIX ELEMENTS <(Pm| P2|¢n>: N E[kn(kn+ 1 5m,n+1
For Legendre DVR ir¥, the DVR points and the FBR- k(K= 1) 81l (A8)

DVR transformation matrix are obtained from the standard ) o
proceduré®34Therefore, the DVR points are symmetrically The matrix elements for the multiplicative operators and the
distributed with respect t@=m/2. In the case of Fourier Potential are diagonal in the DVR. Therefore, the FBR-DVR
DVR in ¢, the DVR points are evenly and periodically dis- ransformation matrices ifland ¢ and Eqs(A6)—(A8) pro-
tributed in[—, ], following Meyer’s prescription for the vide all the necessary ingredients to evaluate the matrix ele-
definition of DVR points® The DVR points are thus given ments of the operatdf in the DPA-DVR basis.

as
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D. Luckhaus, J. Chem. Phy$13 1329(2000.
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for evenN, but not for oddN. In addition,¢=*7/2 are grid M. Miadenovic Spectrochim. Acta, Part &8, 809 (2002.
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13
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