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Symmetry-adapted direct product discrete variable
representation for the coupled angular momentum operator:
Application to the vibrations of „CO2…2

Hee-Seung Lee,a) Hua Chen, and John C. Light
Department of Chemistry and James Franck Institute University of Chicago, Chicago, Illinois 60637

~Received 29 April 2003; accepted 27 May 2003!

The theoretical~quantum! description of large amplitude vibrations of systems containing four or
more atoms using orthogonal internal coordinates requires three or more angular coordinates. The
basis commonly used to represent these coordinates is the coupled angular momentum basis. We
show that a direct product angular discrete variable representation~DVR! can be used
advantageously, particularly for systems with high permutation-inversion symmetry and nonlinear
equilibrium geometry. The DVR permits full symmetry projection and solution by the sequential
diagonalization and truncation method. Application to the dimer of rigid CO2 demonstrates the
accuracy and efficiency of the approach. ©2003 American Institute of Physics.
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I. INTRODUCTION

Over the past ten years, there has been great progre
the field of variational calculations of molecular rovibr
tional energy levels. Theoretical chemists can now handle
vibrational problems of four-atom systems exactly in f
dimension1–14 and even a five-atom system, such
methane,15,16has been tackled. All the bound vibrational le
els of some triatomic molecules such as H3

117 and H2O18

have been determined very accurately. The progress is in
due to the growing computer power, but more importan
the development of computational algorithms for simplifi
kinetic energy operators and Hamiltonian evaluation, m
efficient basis functions and methods of solution includ
both iterative and basis reduction methods.

For tetra-atomic systems with orthogonal internal co
dinates, a coupled angular momentum~CAM! basis~spheri-
cal harmonics!,4,6,10,12–14,19which is a nondirect product ba
sis, is normally used for the angular part of the basis. T
CAM angular basis can be combined with either discr
variable representations~DVR!20,21or finite basis representa
tions ~FBR!21 for the radial coordinates. The major adva
tage of using CAM bases is that the kinetic energy ma
elements are quite simple and all exact matrix elements
finite despite of the singularity in the kinetic energy operat
The CAM basis can be easily adapted to the permuta
inversion~PI! symmetries of the system.

To find the eigenpairs with the CAM basis, either
iterative~Lanczos! diagonalization22 or direct~Householder!
diagonalization method can be used. To evaluate the po
tial matrix by quadrature or the action of the Hamiltonian
a vector in the CAM basis, a pseudo-spectral type trans
mation to a grid representation6,10,12,13,23,24is usually em-
ployed in the iterative diagonalization. For accuracy, t
transformation is not unitary with more grid points tha
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CAM basis functions. In the direct diagonalization approa
the angular and radial parts are often done using the seq
tial diagonalization and truncation~SDT! method.4,25,26 In
this procedure the full angular Hamiltonian matrices in CA
basis must be diagonalized, then truncated and coupled
the radial bases to construct the more compact full dim
sional Hamiltonian matrix. However, the SDT cannot be a
plied within the CAM basis itself.

The main problem with the CAM basis is that the num
ber of CAM basis may be very large, even for ‘‘three-angl
systems. Since the CAM basis functions are delocalized
configuration space, a very large basis may be required if
actual eigenstates are localized in the angles. This is com
since the wave functions of the lower energy vibration
states of typical strongly bound tetra-atomic systems are v
localized in space. Due to the nondirect product nature of
CAM basis it is not feasible to contract the basis beyond
symmetry reduction.

In theory, direct product representations in each coo
nate have several advantages over nondirect product re
sentations such as the CAM basis2,11,16,27since an optimal
DVR, such as potential optimized DVR28,29 ~PODVR!, can
be found for each coordinate. This permits both sim
Hamiltonian evaluation and efficient matrix vector produc
in iterative solution methods. The sequential diagonalizat
and truncation~SDT! techniques can be applied and provid
a compact multidimensional correlated basis for direct dia
nalization. For these reasons, there has been a growing i
est of using direct product DVR for larger polyatom
systems.2,11,16,27

However, direct product angular DVR~DPA-DVR! have
several potential disadvantages: The size of the direct p
uct basis scales poorly with dimension; symmetries may
difficult to handle; and, perhaps most serious, multidime
sional DPA-DVRs cannot be constructed to satisfy the ex
wave function boundary conditions at all the singular poi
of the effective kinetic energy operators~i.e., where the
7 © 2003 American Institute of Physics
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4188 J. Chem. Phys., Vol. 119, No. 8, 22 August 2003 Lee, Chen, and Light
m2/sin2 u type terms become singular!. Since the appropriate
boundary conditions change depending on the angular
mentum projection, no single DVR can be chosen to sat
all boundary conditions. This leads to ‘‘infinite’’ quadratu
error for a direct product Legendre polynomial DVR, f
example, although the eigenvalues of the kinetic energy
erator eventually converge30 since the effective potential
(1/sin2 u) are repulsive.

The purpose of this paper is to address the issues a
ciated with the above-mentioned problems in the DPA-DV
approach for tetra-atomic systems, namely the symmetry
duction, convergence behavior, and solution by sequen
reduction. Specifically, we present an algorithm for the sy
metry adaptation of a DPA-DVR which may drastically r
duce the number of DVR functions. This allows direct diag
nalization for larger systems with high PI symmetry. T
number of DVR functions after the symmetrization will b
comparable to the number of symmetry-adapted CAM ba
functions for a given symmetry block even without the u
of a PODVR. If a PODVR basis is appropriate, it could al
be symmetrized through the procedure below. The use
symmetry other than parity for the direct product DVRs f
the coupled angular momentum operator for three an
~four atoms! has not been reported previously.

The symmetry adaptation of the angular DVR is impo
tant since without it the direct product DVR approach m
be less efficient than the symmetry-adapted CAM basis e
if the SDT procedure is used. Although more DVR functio
may be required than the CAM basis for convergence du
the boundary condition problem, the symmetry-adapted
rect product DVR approach leads to a muchsmaller three-
dimensional angular matrix after the SDT procedure. T
symmetry adaptation also has the additional advantage
the assignment of symmetry species to each vibrational s
is obviously simplified.

In the present work, we calculated the vibrational en
gies of the CO2 dimer, (CO2)2 , using a fully symmetry-
adapted direct product DVR basis. With its monomers h
rigid, the vibrational Hamiltonian of (CO2)2 is essentially
four dimensional (J50). But the angular part of the Hamil
tonian is identical to that of tetra-atomic system and we
apply the present approach to the tetra-atomic system. T
are several motivations to choose (CO2)2 as a test system
~1! It possesses a very high symmetry (G16) and demon-
strates the symmetry adaptation of the angular DVR.~2! It
demonstrates that the DPA-DVR is advantageous even
this extremely floppy system for which the CAM function
are reasonably good. Due to the floppiness of the syste
PODVR approach for the angular coordinates may not
appropriate.~3! The floppiness of system will allow the com
Downloaded 05 Sep 2003 to 128.135.132.83. Redistribution subject to A
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plex to sample the singular region of the Hamiltonian. In th
work, we monitor the convergence of the DPA-DVR calc
lations for such problematic situations. Although the DP
DVR approach has been used for systems with four or m
atoms, the accuracy of the method has not been looke
closely beyond model systems.30 ~4! A variational solution of
the (CO2)2 using the CAM basis is available31 for checking
the accuracy and efficiency of the new approach.

The remainder of the paper is organized in five sectio
In Sec. II, we present the theory for the DPA-DVR approa
for the vibrational problem of (CO2)2 . The algorithm for the
symmetry-adapted DPA-DVR basis is given in Sec. III a
the numerical details of the calculation in Sec. IV. We discu
the performance of direct product DVR approach for (CO2)2

in Sec. V and the conclusion in Sec. VI.

II. THEORY

The direct product angular DVR~DPA-DVR! approach
for tetra-atomic systems has been described by sev
authors.2,27,32 In this section, we define the method briefl
The coupled angular momentum operator~kinetic energy!
for two coupled rotors~rigid linear molecules! is

K̂5B1 ĵ 1
21B2 ĵ 2

21B~ Ĵ2 ĵ 12 ĵ 2!2, ~1!

where ĵ i is the angular momentum operator of rotori, Bi is
the corresponding rotational constant,J is the total angular
momentum, andB is the rotational constant of the whol
system. ForJ50, Eq. ~1! represents the angular part of th
kinetic energy operator for the vibrational Hamiltonian
tetra-atomic systems. The orientation of the two rotors
given by the two bending angles, with respect to the bo
fixed z axis,u i , and torsion angle,f.

The operatorK̂ can be written explicitly as~\51,
J50)

K̂5~B1B1! ĵ 10
2 1~B1B2! ĵ 20

2

1S B1B1

12x1
2

1
B1B2

12x2
2

22BD ĵ z
21B~ ĵ 11

ĵ 21
1 ĵ 12

ĵ 22
!,

~2!

where

xi5cosu i , ~3!

ĵ i0
2 52

]

]xi
~12xi

2!
]

]xi
, ~4!

ĵ z52 i
]

]f
, ~5!
ĵ 11
ĵ 21

1 ĵ 12
ĵ 22

5
2x1x2

A~12x1
2!~12x2

2!
P̂2~f!12S F̂~x1!

x2

A12x2
2

1F̂~x2!
x1

A12x1
2D P̂1~f!

1S 2F̂~x1!F̂~x2!2
1

2

x1x2

A~12x1
2!~12x2

2!
D cosf. ~6!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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4189J. Chem. Phys., Vol. 119, No. 8, 22 August 2003 The coupled angular momentum operator
In the CAM basis all kinetic energy matrix elements a
known analytically and only the last operator in Eq.~2!
couples different basis functions. In the DPA-DVR, howev
the last operator is not analytic and is not numerically H
mitian unless written in the form of Eq.~6!. The Hermitian
operators,P̂i ’s and F̂ ’s in Eq. ~6! are defined as

P̂1~f!5 i sinf
]

]f
1

i

2
cosf, ~7!

P̂2~f!5cosf
]2

]f2
2sinf

]

]f
, ~8!

F̂~xj !5 iA12xj
2 ]

]xj
2

i

2

xj

A12xj
2

. ~9!

Note that the Hamiltonian as written in Eqs.~2!–~9! consists
of sums of products of Hermitian operators only, which si
plifies the use of a DVR.2

For the CO2 dimer, we use Jacobi coordinates, with rig
monomers. The vectorR̂ connects the center of masses
the two monomers and lies along the body-fixedz axis ~see
Fig. 1!. The four-dimensional vibrational Hamiltonian can b
written as

Ĥ52
1

2m

]2

]R2
1K̂1V̂, ~10!

whereV̂ is the potential of the system andR is the length of
the vectorR̂. In the present work, we used theab initio
surface of Bukowskiet al.33 for V̂.

For the basis functions, we used a potential optimiz
DVR ~PODVR! in the R coordinate. The construction of th
PODVR basis forR was described previously.31 For the an-
gular bases, we used the direct product of Legen
DVRs21,34 for u1 and u2 , and a Fourier~plane wave!
DVR3,35,36for the torsion anglef. Thus the DVR is based on
the direct product FBR functions

1

A2p
P j 1

~x1!P j 2
~x2!eimf, ~11!

whereP j is a normalized Legendre polynomial. In the A
pendix, we describe the details of DVR used in the pres
work and evaluations of matrix elements in DPA-DVR.

As noted by Daiet al.,30 although the choice of Leg
endre DVR leads to potentially infinite quadrature errors
the end points (x561) while evaluating the matrix ele
ments of ĵ z

2/(12x2) for mzÞ0, the eigenvalues ofĵ 2 do

FIG. 1. The Jacobi coordinates for the (CO2)2 .
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converge to the correct values relatively fast. This is beca
the effective potential, 1/(12x2), is repulsive and forces the
amplitude of the wave functions to zero in the singular
gion. However, if the system potential has a strong tende
to make the system sample the singular~linear! region, the
convergence becomes slow. This prevents one from using
DPA-DVR approach for linear systems, such as HCCH.
Sec. V, we will come back to this issue and discuss the c
vergence of the calculations for the vibrational energies
(CO2)2 .

III. SYMMETRY-ADAPTED DVR

Symmetry adaptation of basis functions based
permutation-inversion~PI! symmetry have been widely
discussed.37,38 The PI symmetry of the (CO2)2 can be char-
acterized by using theG16 group.31,37 The group has eigh
nondegenerate irreducible representations and two do
degenerate irreducible representations.

As discussed by Carrington21,39 there are two ways to
construct symmetry-adapted DVR bases. The first40 symme-
trizes the original basis functions~FBR basis! and the
symmetry-adapted DVR functions are then defined se
rately for each symmetry block by diagonalizing an app
priate matrix of the coordinate operator. This will not work
the symmetry operations generate a nondirect product b
from the original basis. This occurs for tetra-atomic syste
since the symmetry operations involve changes in more t
one coordinate. The second approach, which we use her
more general. We take the linear combinations of primit
DVR functions to generate eigenfunctions of each symme
operation. Although this is a more natural choice, the str
ture of the Hamiltonian matrix becomes more complicate

For theG16 group, the actions of the symmetry oper
tions on the body-fixed coordinates have been given@for the
(N2)2 system# by Tennysonet al.41,42and are shown in Table
I. There the numbers refer to the oxygen nuclei and the
eration~ab! means the permutation of oxygen nuclei a and
For details of the PI operations listed in Table I, please re
to Ref. 37. Table I also shows the actions of the PI operati
on the DPA-DVR basis,uabg&5ua&ub&ug&, whereua&, ub&, and
ug& represent the DVR functions foru1 , u2 , andf localized
at DVR pointsa, b, andg, respectively. Note that ifa, b,
andg are DVR points,p2a(5ā), p2b(5b̄), 2g(5ḡ)
andg1p~5g* ! should also be the DVR points to fully adap
the symmetry of (CO2)2 . Our DVR basis functions satisfy
these constraints~see Appendix!.

The symmetry-adapted DVR basis is obtained by
quentially incorporating the transformation properties

TABLE I. Transformation of angular coordinates and the DVR functio
under the actions of PI symmetry operations ofG16 group.

P̂ u1 u2 f P̂uabg&

E* u1 u2 2f uabḡ&
~12!~34! p2u1 p2u2 f uāb̄g&
~13!~24! p2u2 p2u1 f ub̄āg&
~12! p2u1 u2 f1p uābg* &
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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4190 J. Chem. Phys., Vol. 119, No. 8, 22 August 2003 Lee, Chen, and Light
DVR functions under PI operations listed in Table I. To
this we use the principle that ifP̂ is a symmetry operation
such thatP̂ua&56ub&, then

ua;p561&5NP~ ua&1~21!pub&), ~12!

is the symmetry adapted function with respect toP̂. NP is a
normalization constant. This process can be repeated
each symmetry operation sequentially. Since symmetry
erations on a DVR function replace coordinate values~see
Table I!, all unique symmetry-adapted functions can be g
erated with reduced ranges of the coordinates. The resul
the sequential generation of symmetry-adapted DPA-D
functions forG16 are given below, along with normalizatio
constants and the appropriate coordinate range. The sym
try numberss, l, m, p, are 0 or 1 and together generate
symmetrized functions.

A. E* : The adaptation of inversion operation can
done easily and it is a well known procedure for tetra-atom
systems.2,3 Namely,

uabg;s&5Ns~ uabg&1~21!suabḡ&),
~13!

Ns5A 1

2~11dgḡ!
,

g>0. ~14!

Note that thed-function in the normalization constant als
affects the basis function forg5p due to the periodic bound
ary condition ~i.e., ḡ5g for g5p!. The above-mentioned
linear combination leads to DVRs based on$cosmf% and
$sinmf% for the even and odd parity states, respectively.

B. ~12!~34!: This operation exchanges two oxygen ato
that belong to the same CO2 monomer. In this case
symmetry-adapted basis function is given as

uabg;sl&5Nl~ uabg;s&1~21! l uāb̄g;s&),
~15!

Nl5A 1

2~11daādbb̄!
,

ā<b if a<a0 , ā,b if a.a0 , ~16!

wherea0 refers top/2 hereafter. In Eq.~16!, the range ofb
is halved. Note thatl 50 leads to singly degenerate stat
whereasl 51 leads to doubly degenerate states. No furt
symmetry adaption is possible for the doubly degene
states. Therefore, the symmetry adaptations described b
are applied only for the singly degenerate states.

C. ~13!~24!: This operation exchanges the roles of tw
CO2 monomers and changes the orientation of the bo
Downloaded 05 Sep 2003 to 128.135.132.83. Redistribution subject to A
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fixed z axis. The symmetry-adapted basis for this operatio
given as

uabg;slm&5Nm~ uabg;sl&1~21!mubag;sl&),
~17!

Nm5A 1

2~11d uauubu!
,

ā<b if a<a0 , a<b if a.a0 , ~18!

whereuau5max(a,ā).
D. ~12!: This operation affects one of the two monome

and reduce the number of DVR points inf to roughly one
quarter of the original number of points. The correspond
symmetry-adapted basis is constructed as

uabg;slmp&5Np~ uabg;slm&

1~21!puābḡ* ;slm&),
~19!

Np5A 1

2~11daādgḡ* !
,

0<g<p/2 ~a<a0 if g5p/2!. ~20!

In our implementation of the Fourier DVR forf, only the
even numbers of DVR points forf is allowed for
uabg;slmp&. This is becauseuābḡ* ;slm& does not exist
for g50 ~i.e., ḡ* 5p) if an odd number of DVR points is
used~see Appendix!. However, both odd and even numbe
of DVR points inf are possible foruabg;slm&. In Table II,
we summarize the effects of settings for paramet
(s,l ,m,p). For doubly degenerate states, parametersm andp
are not relevant.

IV. NUMERICAL DETAILS

The evaluations of Hamiltonian matrix elements
symmetry-adapted angular bases could be quite complica
We found that the following three-step procedure is easy
implement in the programming.~1! For each symmetry
block, we first determine the right combinations of DV
points,~a,b,g!, that satisfy the restrictions on the range ofa,
b, andg as described in Sec. III.~2! Expand the symmetry-
adapted basis functions, Eq.~19!, into 16 primitive basis
functions, uabg&, and evaluate the matrix elements in th
primitive basis. The matrix elements in primitive basis a
summed up to obtain the matrix element in symmet
adapted basis. In other words, we write the matrix eleme
in symmetry-adapted basis as

TABLE II. Parameter settings for singly and doubly degenerate states.

G s l m p

A1
6 0/1 0 0 0

A2
6 0/1 0 1 1

B1
6 0/1 0 1 0

B2
6 0/1 0 0 1

E6 0/1 1
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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^a8b8g8;slmpuĤuabg;slmp&

5Ns8Nl8Nm8 Np8NsNlNmNp$@^a8b8g8uĤuabg&1^a8b8ḡ8uĤuabḡ&1^ā8b̄8g8uĤuāb̄g&¯#

1~21!s3@^a8b8ḡ8uĤuabg&1^a8b8g8uĤuabḡ&1^ā8b̄8ḡ8uĤuāb̄g&¯#

1~21! l3@^ā8b̄8g8uĤuabg&1^ā8b̄8ḡ8uĤuabḡ&1^a8b8g8uĤuāb̄g&¯#

1¯1~21!s1 l 1m1p^b̄8a8ḡ8* uĤuabg&1^b̄8a8g8* uĤuabḡ&1^b8ā8ḡ8* uĤuāb̄g&1¯#%. ~21!
m
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There are total 256 terms in Eq.~21!. However, we have to
note that matrix elements in primitive basis with the sa
form of prefactor~i.e., terms in a given square bracket! are
the same due to the symmetry and there are only 16 un
matrix elements in primitive basis. Therefore, this proced
involves 16, instead of 256, evaluations of matrix eleme
in the primitive basis and it does not consume much C
time. The evaluations of the matrix elements in the primit
basis are performed as described in Appendix. At this sta
the normalization constants are not considered and som
the terms in the expansion may be identical for certain va
of ~a,b,g!. ~3! Finally, an appropriate normalization factor
multiplied to the result obtained in step 2. The normalizat
factor will take care of the duplicated terms in step 2.

In the present work, the Hamiltonian matrix was diag
nalized using the sequential diagonalization and trunca
~SDT! method. First, we diagonalized two-dimensional~2D!
Hamiltonian matrix foru1 and u2 at each DVR point inR
andf. We found that including all the terms that are diag
nal in R andf, i.e., the first and second terms in Eq.~2!, the
third term in Eq.~6! and the potentialV̂ in the 2D matrix
leads to the fastest convergence. Once the 2D matrix is
agonalized, a maximum N2D number of states with energ
less than E2D are retained. These states coupled with
DVR basis inf are used to construct three-dimensional~3D!
angular Hamiltonian matrix at each DVR point inR. In the
3D matrix, the third term in Eq.~2!, the first and second
terms in Eq.~6! are included. The 3D Hamiltonian matrice
are diagonalized and a maximum N3D number of states w
energies less than E3D are retained at each DVR point iR.
The final 4D matrix is constructed by adding the first term
Eq. ~10! and then diagonalized to obtain the vibrational e
ergies and wave functions of (CO2)2 . Note that we can also
apply SDT to theu1 andu2 parts without the loss of accu
racy if the 2D matrix diagonalization become time consu
ing, although this would treat the equivalentu1 andu2 coor-
dinates differently.

The reduced massm521.994 914 63 amu and the mon
mer rotational constantB15B250.390 219 027 cm21 were
used in the calculations. Throughout the calculations, t
teen PODVR points were used forR coordinate that are ob
tained from 100 Sinc DVR functions distributed in the ran
of @2.0,7.0# Å. For the angular basis, we used 30 Four
DVR points in f, but the symmetry adaptation reduces t
number of DVR points to 8 fors50 and 7 fors51 calcu-
lations, respectively, for singly degenerate states. In the c
of bending coordinates,u, up to 45 DVR points were used
For the SDT parameters, we found that N2D550, E2D5500
Downloaded 05 Sep 2003 to 128.135.132.83. Redistribution subject to A
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cm21, N3D5200, E3D550 cm21 were appropriate to con
verge the lowest 10 vibrational states of each symme
block. The typical size of the 4D Hamiltonian matrix in trun
cated basis is approximately 200032000 for each symmetry

Finally, we make a brief comment on the case where
total angular momentumJ.0. For JÞ0, the kinetic energy
operatorK̂ in Eq. ~1! will have additional terms ofB@ Ĵ2

22(Ĵx ĵ 12,x1 Ĵy ĵ 12,y1 Ĵzĵ 12,z)#, where ĵ 125 ĵ 11 ĵ 2 . Assum-
ing that we use symmetric-top eigenfunctions as basis for
overall rotation, the first and the last term are diagonal inK
~projection of Ĵ on the body-fixedz axis!, whereasĴx ĵ 12,x

1 Ĵy ĵ 12,y ~Coriolis coupling! leads to terms in off-diagonal in
K. The evaluations of matrix elements for these extra ter
in DPA-DVR basis would be more difficult than in th
coupled angular momentum~CAM! basis simply because th
CAM basis are eigenfunctions ofĴz , ĵ 12

2 , and ĵ 12,z . How-
ever, the general procedure for diagonalizing the Ham
tonian matrix would be the same: Diagonalize eachK-block
separately as described above; keep a certain numbe
states for eachK-block; transform off-diagonalK-blocks ac-
cording to the retained states; and finally diagonalize
transformed Hamiltonian. Alternatively, the Coriolis co
pling terms may be included by perturbation theory.

V. RESULTS AND DISCUSSION

The CO2 dimer hasC2h equilibrium structure~slipped
parallel,u15u2559°, f50°, see Fig. 2! and there are four
intermolecular vibrational normal modes31,33

Gvib52Ag1Au1Bu . ~22!

By comparing the character tables ofC2h andG16, we can
find that each vibrational normal mode can be represente
a direct sum of two singly degenerate states and one do
degenerate state, i.e.,

GAg
5A1

1
% B2

1
% E1

GAu
5A1

2
% B2

2
% E2,

~23!
GBg

5A2
2

% B1
2

% E2,

GBu
5A2

1
% B1

1
% E1.

Physically, this means that there are four nonsuperimpos
structures for (CO2)2 ~see Fig. 2!. If the barriers between
these structures are sufficiently high, all four states that c
stitute each vibrational normal mode are degenerate. In
case of (CO2)2 , however, these barriers are not high enou
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and moderate vibrational excitation allows the dimer ha
enough energy to penetrate the barrier. Therefore, each
brational level is split into four sublevels~tunneling split-
ting!. It should be noted, however, that (12C16O2)2 is com-
posed of all boson atoms, which means that only the st
with Ag symmetry will show up in the real spectrum due
the spin statistics. For different combinations of isotop
states with other symmetries will also be allowed.

In Table III we report the energies of lowest 10 vibr
tional states of (CO2)2 for singly degenerate states calculat
by the methods described in the previous sections. For al
DVR calculations reported in Table III, the same DVR a
SDT parameters are used~see Sec. IV! except for the numbe
of DVR points inu. Note that the number of DVR points i
u listed in Table III is referring to the number of primitiv
basis functions before the symmetry adaptation. It can
seen from Table III that two singly degenerate symme
blocks listed in the same row have similar energies and t
belong to the same vibrational normal mode symmetry@Eq.
~23!#. For the ground states, the tunneling splitting is n
observed and the ground-state energies are the same~within
0.01 cm21! for those symmetry pairs, i.e., (A1

1 ,B2
1),

(B1
1 ,A2

1), etc.
In Table III, we report the convergence behavior of t

lowest 10 vibrational states for each symmetry block w
respect to the number of DVR points inu. We compare the
results from the present work with those from the previo
work31 where CAM bases were used. The CAM basis cal
lations are converged within 0.01 cm21. In the CAM basis
calculations, roughly 900 angular bases were used for e
symmetry and the 3D angular Hamiltonian matrices w
diagonalized in single step at each PODVR point inR and
truncated to construct the 4D Hamiltonian matrix. In t
present work, the DPA-DVR with SDT leads to no more th
400 angular bases~truncated 2D basis inu coupled with
Fourier DVR inf!. Although a substantially smaller numbe

FIG. 2. A two-dimensional contour plot of the (CO2)2 potential energy
surface of Bukowsket al. ~Ref. 33! in u1 and u2 . For a given value of
(u1 ,u2), the potential energy is minimized with respect toR and f. The
spacing between lines are 50 cm21 starting at250 cm21. The potential has
the minimum at2484.0 cm21.
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of angular basis is used in the DPA-DVR approach, we w
able to achieve a high accuracy in the calculations. W
Nu545, the energies of 65 states out of total 80 states
ported in Table III differ by less than 0.05 cm21 from those
of CAM calculations and 53 of them are within 0.02 cm21.
Given the fact that (CO2)2 is extremely floppy complex, the
number of DVR points needed to achieve the level of ac
racy shown in Table III is relatively small, which indicate
the good performance of DPA-DVR basis for the coupl
angular momentum operator. Note that convergence of
culations with respect toall other parameters are achieve
within 0.01 cm21 for all states listed in Table III. Becaus
CAM basis functions are delocalized in configuration spa
they are, in fact, good choices for the van der Waals co
plexes. This implies that the difference in the size of angu
basis between the CAM basis and contracted DVR ba
would be greater for more strongly bound systems where
CAM basis becomes less efficient.

Although the overall performance of DPA-DVR basis
excellent, we found there are a few states that conve
rather slowly compared to other states. These states
marked with asterisks in Table III. They are the states t
are not converged within 0.1 cm21 with Nu545, although
they are converging to the correct values. These slo
converging states are found only inA2

6 andB2
6 states, but we

could not see any correlation between the convergence
the symmetry. In fact, the symmetry requires different loc
tions of nodal surfaces forA2

6 and B2
6 states: B2

1 at
f56p/2, A2

1 at f56p/2, andu15u2 , B2
2 at f50, A2

2 at
f50, andu15u2 . On the other hand, we can speculate th
the nature of these slowly converging states is related to
fact that the DPA-DVR approach is not efficient for the sta
that sample the singular region. In order to confirm th
speculation, we analyzed the wave functions of slo
converging states.

In Fig. 3, we plot the two-dimensional slices of the wa
functions in u1 and u2 coordinates for some of the state
marked with asterisks in Table III. They are the tenthB2

1

state@Fig. 3~a!#, eighthA2
1 state@Fig. 3~b!#, ninth B2

2 state
@Fig. 3~c!# and thirdA2

2 state@Fig. 3~d!#. For these plots, the
R and f coordinates are fixed at the value where the wa
functions are near the maximum. The wave function of te
A2

1 state is similar to Fig. 3~b! and wave functions of sixth
and ninthA2

2 states are similar to Fig. 3~c!. Since the wave
function plots in Fig. 3 are reduced dimensional slices of
four-dimensional wave functions, we have to keep in mi
that they only provide us part of the information, neverth
less important, about the vibrational motions of the cor
sponding states even though they represent the wave f
tions near the maximum amplitude. In fact, we found th
small changes in theR coordinate can result in substantial
different two-dimensional plots inu1 andu2 , especially for
the states with higher excitations.

We first note that the wave functions plotted in Fig.
have small amplitude around the global minimum, t
slipped parallel structure (u15u2559°). The eighthA2

1

state@Fig. 3~b!# and the thirdA2
2 state@Fig. 3~d!# even have

a node atu15u2 . The amplitudes of wave functions for th
other two states are also pushed away from the global m
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



4193J. Chem. Phys., Vol. 119, No. 8, 22 August 2003 The coupled angular momentum operator
TABLE III. Convergence of DVR calculations with respect to the number of DVR points inu for the vibrational states of (CO2)2 . EFBR refers to the energies
obtained using CAM basis~Ref. 31!. The states that are not converged within 0.1 cm21 with Nu545 are marked with asterisks.

Symmetry EFBR

EDVR2EFBR

Symmetry EFBR

EDVR2EFBR

Nu533 Nu537 Nu541 Nu545 Nu533 Nu537 Nu541 Nu545

A1
1 2392.38 0.00 0.00 0.00 0.00 B2

1 2392.38 0.00 0.00 0.00 0.00
2362.93 0.00 0.00 0.00 0.00 2362.93 0.00 0.00 0.00 0.00
2351.54 20.01 0.00 0.00 0.00 2351.22 0.00 0.00 0.00 0.00
2348.03 0.00 0.00 0.00 0.00 2347.92 0.00 0.00 0.00 0.00
2346.06 20.03 20.02 20.02 20.01 2343.80 20.05 20.04 20.03 20.02
2338.44 20.03 20.03 20.02 20.02 2332.44 20.17 20.13 20.11 20.08
2326.37 20.02 20.02 20.02 20.02 2323.58 20.04 20.03 20.02 20.01
2323.68 0.00 0.00 0.00 0.00 2321.67 20.09 20.07 20.05 20.04
2317.96 20.02 20.02 20.02 20.02 2312.45 20.08 20.05 20.04 20.03
2316.69 20.02 20.01 20.01 20.01 2311.36 20.30 20.24 20.19 20.15*

B1
1 2372.69 0.00 0.00 0.00 0.00 A2

1 2372.69 0.00 0.00 0.00 0.00
2353.36 20.01 20.01 20.01 20.01 2353.08 20.01 20.01 0.00 0.00
2345.02 20.05 20.04 20.03 20.02 2340.76 20.10 20.08 20.06 20.05
2334.12 20.02 20.02 20.02 20.02 2331.25 0.00 0.00 0.00 0.00
2331.13 0.00 0.00 0.00 0.00 2327.63 20.17 20.13 20.10 20.08
2323.55 20.01 20.01 20.01 20.01 2320.39 20.15 20.12 20.09 20.08
2319.41 20.02 20.01 20.01 20.01 2316.34 20.03 20.02 20.02 20.01
2314.87 20.04 20.04 20.04 20.04 2308.21 20.26 20.20 20.16 20.12*
2309.87 20.02 20.01 20.01 20.01 2302.34 20.09 20.06 20.05 20.04
2303.44 20.04 20.04 20.04 20.03 2300.13 20.27 20.21 20.17 20.14*

A1
2 2369.76 0.00 0.00 0.00 0.00 B2

2 2369.76 0.00 0.00 0.00 0.00
2342.47 0.00 0.00 0.00 0.00 2342.54 0.00 0.00 0.00 0.00
2331.37 0.00 0.00 0.00 0.00 2333.37 20.13 20.10 20.08 20.06
2327.24 0.00 0.00 0.00 0.00 2328.40 20.08 20.06 20.05 20.03
2323.81 0.00 0.00 0.00 0.00 2326.14 20.05 20.04 20.03 20.02
2312.22 20.03 20.03 20.03 20.02 2318.98 20.18 20.14 20.11 20.08
2305.47 0.00 0.00 0.00 0.00 2307.17 20.20 20.15 20.11 20.09
2300.65 20.01 20.01 20.01 20.01 2305.26 20.03 20.02 20.02 20.01
2293.71 20.01 20.01 20.01 0.00 2299.81 20.45 20.34 20.26 20.20*
2289.91 20.07 20.07 20.06 20.06 2296.51 20.04 20.03 20.03 20.02

B1
2 2351.37 0.00 0.00 0.00 0.00 A2

2 2351.37 0.00 0.00 0.00 0.00
2334.27 0.00 0.00 0.00 0.00 2335.55 20.07 20.06 20.04 20.03
2321.60 20.02 20.01 20.01 20.01 2327.90 20.25 20.19 20.15 20.12*
2312.16 0.00 0.00 0.00 0.00 2314.23 20.21 20.16 20.13 20.10
2306.71 20.02 20.02 20.02 20.02 2312.00 0.00 0.00 0.00 0.00
2299.79 20.03 20.03 20.02 20.02 2303.96 20.40 20.31 20.24 20.18*
2298.75 20.01 20.01 20.01 20.01 2302.71 20.01 0.00 0.00 0.00
2287.21 20.05 20.04 20.03 20.03 2293.94 20.07 20.05 20.04 20.03
2283.10 20.03 20.03 20.02 20.02 2291.27 20.47 20.36 20.28 20.21*
2280.32 20.05 20.05 20.05 20.05 2284.24 20.11 20.08 20.06 20.05
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mum structure. The characteristic vibrational motion asso
ated with Figs. 3~a! and 3~b! is the geared in-plane bendin
motion, which changes the structure of complex from
slipped parallel to the T-shape. Strictly in-plane motion
however, not allowed inA2

2 and B2
2 states@Figs. 3~c! and

3~d!# since they have node atf50°. But, more importantly,
all four states plotted in Fig. 3 have non-negligible probab
ity to have the structure close to the T-shape,u150 andu2

5p/2 ~or vice versa!, where the singularity occurs. In fac
the tilted T-shaped structure is dominant for the ninthB2

2

state and the thirdA2
2 state.

These observations confirm that the increasing proba
ity for an eigenstate to sample the singular region (u1 or
u2;0°) leads to the slower convergence with respect to
number of DVR points inu. However, for (CO2)2 system
such problematic states do converge to the correct v
without significant deterioration in the accuracy of calcu
tion. As shown in Table III, even the slow-converging sta
Downloaded 05 Sep 2003 to 128.135.132.83. Redistribution subject to A
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e
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have errors less than 0.1% withNu545. The presence o
states sampling the singular region decreases the efficie
of the DVR approach since we have to use more DVR fu
tions, but the impact of such states is drastically reduced
using the symmetry-adapted DVR basis. For typical non
ear tetra-atomic~or larger! molecules, the probabilities to
have linear structures are much lower than what we saw
the (CO2)2 system unless the molecule is highly excite
Therefore, the convergence problem associated with the
gularity in the DPA-DVR approach should be less importa
for nonlinear tetra-atomic systems and the DPA-DVR ba
should be a valuable alternative to the CAM basis up
fairly high internal energy.

Finally, we make a brief comment on the performance
the symmetry-adapted DPA-DVR/SDT compared to t
Lanczos based iterative method. One promising way to
corporate the symmetry of the system into the Lanc
method is so called symmetry-adapted Lanczos method
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 3. Two-dimensional slices of the (CO2)2 vibra-
tional wave function inu1 andu2 coordinates for~a! the
tenth state ofB2

1 symmetry,~b! the eighth state ofA2
1

symmetry,~c! the ninth state ofB2
2 symmetry, and~d!

the third state ofA2
2 symmetry. The other two coordi-

nates,R andf, are fixed at the values where the ma
nitude of wave function is near the maximum.
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Carrington et al.43 and Guo et al.44 In symmetry-adapted
Lanczos, Lanczos vectors are symmetrized throughout
Lanczos iteration instead of symmetrizing the basis. If o
uses the standard partial summation technique2,23 for the
matrix-vector product, the total operation count for sing
matrix-vector product is roughly@103Nr(Nu)3Nf# for the
Hamiltonian in Eqs.~2!–~9! with DPA-DVR basis. For the
symmetry-adapted DVR/SDT discussed in the present w
the cost of calculation is dominated by the final diagonali
tion of the 4D matrix, which scales as (N3D•Nr)

3. Since the
size of 4D matrix is usually 200032000 in this work, the
total cost for the direct diagonalization of all symmet
blocks is roughly a factor of 102 larger than the cost of a
single matrix-vector product withNu545. Since there are
other costs that affect the overall performance, it is not triv
to make a direct comparison between the two methods.
the difference in cost between the two methods for calcu
ing lowest 10 states of (CO2)2 for all symmetry blocks will
be small assuming that roughly 10–20 matrix-vector pr
ucts are needed for each state in symmetry-adapted Lan
However, whenNu ~the slowest converging parameter! in-
creases the cost of symmetry-adapted Lanczos is likel
increase more than that of symmetry-adapted DVR/SDT,
cause the overall cost for the direct diagonalization with S
is not very sensitive toNu ,45 whereas the cost of singl
matrix-vector product is directly proportional toNu

3.

VI. CONCLUSION

The use of direct product angular DVR~DPA-DVR! ba-
sis rather than the coupled angular momentum~CAM! bases
for systems with more than four atoms has several adv
tages. The basis can be easily contracted via sequentia
agonalization and truncation~SDT! to lead to a much smalle
Downloaded 05 Sep 2003 to 128.135.132.83. Redistribution subject to A
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matrix to be diagonalized. It is also trivial to calculate th
potential matrix elements in the DVR. The DPA-DVR is pa
ticularly useful for a potential that has very localized minim
in angles since the CAM basis is delocalized, requiring
large basis. However, the DPA-DVR basis suffers from
poor scaling with respect to the dimensionality and bound
condition problems. This limits the possibility of using th
direct diagonalization for tetra-atomic systems, especially
states with large amplitude motions.

In the present work, we present a simple algorithm
construct the fully symmetry-adapted DPA-DVR basis fun
tions for the couple angular momentum operator. An effici
way to evaluate the matrix elements in symmetry-adap
basis is also described. The major advantage of us
symmetry-adapted basis is to reduce the required numbe
DVR basis functions drastically. By symmetrization, the im
pact of poor scaling is lowered and it is possible to use
DPA-DVR even where a PODVR approach is inappropria
The present algorithm is applied to the calculations of vib
tional energies of (CO2)2 . By using the symmetry-adapte
basis and SDT procedure, we were able to achieve high
curacy with considerably~more than a factor of 2! smaller
number of angular basis functions compared to the CA
basis. The difference in the size of angular matrix to be
agonalized would be greater for more strongly bound sys
where the CAM basis becomes less efficient.

We also discuss the issue associated with the impro
boundary condition of DPA-DVR approach. As expected,
states that sample the singular regions were found to c
verge rather slowly compared to other states. But they
converge to the correct values and they are reasonably a
rate~errors less than 0.1%! with a moderate number of DVR
functions. For a given accuracy, the required number of D
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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functions is larger than what it would be if we do not ha
such problematic states, but the symmetry adaptation and
SDT method reduce the impact of increasing DVR functio
due to those slowly converging states.
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APPENDIX: DVR BASIS AND MATRIX ELEMENTS

For Legendre DVR inu, the DVR points and the FBR
DVR transformation matrix are obtained from the stand
procedure.21,34 Therefore, the DVR points are symmetrical
distributed with respect tou5p/2. In the case of Fourie
DVR in f, the DVR points are evenly and periodically di
tributed in @2p,p#, following Meyer’s prescription for the
definition of DVR points.35 The DVR points are thus given
as

f j5 j S 2p

N D , ~A1!

j 5
2l 2N21

2
, ~odd N!, ~A2!

j 5
2l 2N

2
, ~even N!, ~A3!

whereN is the number of DVR points andl 51,2,...,N. Note
that, in Meyer’s definition of grid points,f5p is a grid point
for evenN, but not for oddN. In addition,f56p/2 are grid
points only ifN is the integer multiple of 4 andḡ* 5g in this
case@see Eq.~19!#. The DVR functions are then defined b

uj~f!5 (
m51

N

Tm jA 1

2p
eikmf5 (

m51

N

Tm jwm~f!, ~A4!

wherekm are also given by Eqs.~A2! and ~A3! with l re-
placed bym. The unitary transformation matrixT is defined
as

Tm j5A1

N
e2 ikmf j . ~A5!

For an odd number of DVR points, this procedure is equi
lent to that of Muckerman.36

The evaluations of matrix elements in the DPA-DV
basis for the first three terms in Eq.~2! are well known.3,21,46

In the evaluation of matrix elements for the fourth term
Eq. ~2!, we need the matrix elements forP̂1(f), P̂2(f), and
F̂(xj ) operators in the DVR basis. These are obtained
evaluating the matrix elements in the original basis@Eq. ~11!#
exactly and then transforming into the DVR. The followin
relation was used for the ‘‘momentum’’ operatorF̂(x)

F̂~x!P l52
i

2A12x2 F ~ l 11!A2l 11

2l 13
P l 11

2 lA2l 11

2l 21
P l 21G . ~A6!
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Therefore, the matrix elements forF̂(x) in the P l involve
^P l 8u1/A12x2uP l& which can be evaluated very accurate
by using Gauss–Chebychev quadrature of first kind. The
trix elements for the operatorsP̂1(f) and P̂2(f) in the
wn(f) basis are given as

^wmuP̂1uwn&5
i

4
@~2kn11!dm,n112~2kn21!dm,n21#,

~A7!

^wmuP̂2uwn&52
1

2
@kn~kn11!dm,n11

1kn~kn21!dm,n21#. ~A8!

The matrix elements for the multiplicative operators and
potential are diagonal in the DVR. Therefore, the FBR-DV
transformation matrices inu andf and Eqs.~A6!–~A8! pro-
vide all the necessary ingredients to evaluate the matrix
ments of the operatorK̂ in the DPA-DVR basis.
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Phys.102, 2315~1995!.

5S. Carter, N. C. Handy, and J. Demaison, Mol. Phys.90, 729 ~1997!.
6R. B. Lehoucq, S. K. Gray, D.-H. Zhang, and J. C. Light, Comput. Ph
Commun.109, 15 ~1998!.

7N. C. Handy, S. Carter, and S. M. Colwell, Mol. Phys.96, 477 ~1999!.
8A. Viel and C. Leforestier, J. Chem. Phys.112, 1212~2000!.
9D. Luckhaus, J. Chem. Phys.113, 1329~2000!.

10R. Chen, G. Ma, and H. Guo, J. Chem. Phys.114, 4763~2001!.
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