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Surface self-diffusion of hydrogen on Cu „100…: A quantum kinetic
equation approach
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The self-diffusion of hydrogen on the~100! copper surface is investigated using a quantum kinetic
equation approach. The dynamics of the adatom is described with a multiple-band model and the
surface phonons represent the thermal bath responsible for the diffusion mechanism. Using the
Wigner distribution formalism, the diffusive motion of the adatom is characterized in terms of the
correlation functions of the adatom–phonon interaction. The diffusion coefficient exhibits two terms
related to phonon mediated tunneling~incoherent part! and to dephasing limited coherent motion
~coherent part!. The competition between these two contributions induced a transition from a
thermally activated regime to an almost temperature independent regime at a crossover temperature
T* . A numerical analysis is performed using a well-established semiempirical potential to describe
the adatom–surface interaction and a slab calculation to characterize the surface phonons. These
calculations show that two-phonon processes represent the relevant contribution involved in the
adatom–phonon coupling. The temperature dependence of the diffusion constant is thus presented
and the relative contribution of the incoherent versus the coherent part is analyzed. Both
contributions exhibit a change of behavior around 100 K from an exponential to a power law
temperature dependence as the temperature decreases. This change is due to the confinement of the
motion of the adatom in the ground energy band at low temperature. The incoherent part is shown
to be the dominant contribution at high temperature and is characterized by an activation energy and
a prefactor equal toDE50.4960.01 eV and D0'2.4431023 cm2/s, respectively. At low
temperature, the power law dependence of the two contributions is different since the coherent part
increases slowly as the temperature decreases whereas the incoherent part decreases. The crossover
temperature is estimated to be equal toT* 5125 K. BelowT* , the coherent part becomes the main
contribution and the diffusion constant exhibits an almost temperature independent behavior.
© 2000 American Institute of Physics.@S0021-9606~00!70227-3#
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I. INTRODUCTION

Diffusion of hydrogen atoms on metallic surfaces play
crucial role in heterogeneous catalysis and in other chem
and physical phenomena occurring at the fluid-so
interface.1 Moreover, the diffusion of hydrogen is of funda
mental interest from a basic physical point of view and ga
rise to extensive theoretical and experimental studies. Du
the small mass of hydrogen, quantum effects may beco
important, even at room temperature, and diffusion may
cur in different ways, depending on the atom–surface in
action, the coverage and the temperature. In a general
three different mechanisms have been proposed to exp
the diffusive motion of hydrogen as a function of th
temperature.2,3 In the lowest temperature regime, the diff
sion may occur by tunneling from site to site. As the te
perature increases, the adatom is localized in an adsorp
site and diffusion consists in thermally activated uncorrela
hopping between neighboring sites. At still higher tempe
ture, the jumps exhibit correlations and the diffusion b
comes more fluidlike in character.

The principal experimental methods used to investig
surface diffusion are the field ion microscope,3 the field
emission current~FEM!,4–8 laser induced desorption,9 scan-
ning tunneling microscopy,10 and laser optical diffraction
1200021-9606/2000/113(3)/1204/13/$17.00
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~LOD!.11,12 However, for hydrogen adsorbed on metals, t
experimental information is more scarce, especially in
low temperature regime where quantum effects may be
portant. Measurements by Gomer and co-worker using F
have been in focus for many years.4–8 They were the first to
show the existence of a transition from a thermally activa
regime to an almost temperature independent regime as
temperature decreases. Their works have suggested that
motion may play an important role at low temperature ev
if the bandwidth of the bands is extremely small. Note th
Gomer and co-workers have shown that the system H
~Ref. 8! exhibits a transition for a temperature close to 1
K. However, Zhu and co-workers12 have performed recen
experiments based on the LOD method which appare
contradict the previous results since they found a therm
activated regime as low as 65 K. Unfortunately, the auth
‘‘do not present a satisfactory explanation for this discre
ancy’’ and the experimental situation remains uncertain
this system.

Two principal types of theoretical methods have be
introduced to investigate the diffusion of an adatom. The fi
method consists in describing the motion of the adatom fr
a quantum mechanical point of view including the coupli
with a thermal bath, either by a perturbation analysis or
4 © 2000 American Institute of Physics
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renormalization. The coupling with the substrate phono
was introduced by Kitaharaet al.13 to study the migration of
an adatom using a one-band model. A multiple-band the
was developed by Efrimaet al.14,15 to investigate the role o
the phonons in the thermally activated regime, i.e., dis
garding the low temperature regime. The influence of b
phonons and electron–hole pair excitations was discusse
Wahnstrom16,17 using an approach based on the Fokke
Planck equation and on the friction theory. In connect
with the works of Gomer, the coverage dependence of
diffusion constant was interpreted in terms of coherent b
motion limited by lateral interactions.18 The anomalous iso
tope dependence of the diffusion constant was studied wi
the small polaron formalism.19 A two-band generalization o
the Hubbard model, including the small polaron theory, w
thus proposed to analyze the influence of both phonons
lateral interactions.20

The second type of method describes the diffusion p
cess as a chemical reaction. These methods are based
quantum version of the classical rate theory~TST!21–29or on
a full quantum mechanical approach based on the flux–
correlation function.30 Due to the numerically demanding na
ture of these techniques, most of them were performed
suming a rigid surface. However, from a physical point
view, the diffusion results from a complicated interacti
involving the surface dynamics. Therefore, the influence
the motion of the surface was investigated using a modi
TST method26–29 and more recently, a transition state wa
packet approach.31 The previous methods were applied to t
system H/Cu~100! for which a semiempirical potential en
ergy is available to describe the interaction between the
drogen and the metallic surface. Note that, similar analy
were performed for other systems. For instance, the diffus
of H on Ni~100! was studied by Mattssonet al.32,33 The au-
thors have determined the potential-energy surface for
system and have analyzed the influence of the sur
phonons using a path centroid method. However, eve
they represent powerful techniques allowing exact quan
calculations, these second types of methods are still lim
to a system which exhibits a reasonable number of degree
freedom. In addition, they are inappropriate to describe
low temperature regime where the delocalization of the a
tom may play an important role.

In this paper, the self-diffusion of hydrogen on copper
investigated using a quantum kinetic equation approach.34,35

Such a method allows us to characterize the diffusion ov
wide range of temperature, including the transition from
thermally activated regime to the low temperature regim
We describe the motion of the adatom with a multiple-ba
model, and the diffusion results from the dynamical coupl
with the surface phonons. At low temperature, quantum
fects lead to the delocalization of the adatom and to the
currence of coherences between quantum states localiz
different sites. Even if these effects are extremely weak,
to the small amplitude of the tunneling, we shall show th
they are not negligible for a temperature lower than a cro
over temperature. As a result, dephasing induced by sur
phonons contributes significantly to the diffusion coefficie
and induces a competition with the thermally activated c
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tribution. To include these coherence effects, we genera
the multiple-band model introduced by Efrimaet al.14,15 us-
ing the Wigner distribution formalism.34–37 In their works,
Efrima and Metiu have neglected the influence of the coh
ences. Indeed, they focused on the thermally activated
gime which requires one to take into account the transfer
population, only. However, the Wigner formalism is a pow
erful method which allows the simultaneous description
the dynamics of both coherences and populations.

The present paper is organized as follows. In Sec. II
first introduce the Hamiltonian of the whole syste
‘‘adatom1substrate’’ and describe the multiple-band mod
in terms of the Wannier states of the adatom. Then,
Wigner function is defined and the quantum kinetic equat
is established using the Zwanzig projector technique. So
ing this equation, we finally introduce the self-diffusion co
stant of the adatom. In Sec. III we applied our formalism
the system H/Cu~100!. In Sec. III A we first present the mod
eling of the motion of the adatom using a one-dimensio
approximation. Then, the surface phonons are character
using a slab calculation method. In Secs. III C and III D w
present our results concerning the dephasing process an
temperature dependence of the diffusion constant, res
tively. Finally, these results are interpreted and discusse
Sec. IV.

II. THEORETICAL PART

A. Model and Hamiltonians

We consider the quantum dynamics of a single hydrog
atom adsorbed on the~100! surface of a metallic substrate. I
a general way, this dynamics is governed by the Hamilton
of the whole system ‘‘adatom1substrate’’ which can be ex
pressed as

H5HA1HS1VAS, ~1!

whereHA denotes the Hamiltonian of the ‘‘free’’ adatom i
the gas phase, i.e., the kinetic Hamiltonian, andHS charac-
terizes the Hamiltonian of the substrate. The third contrib
tion, VAS, stands for the potential interaction between t
adatom and the surface. This coupling Hamiltonian depe
on the degrees of freedom of the whole system including
positionx of the adatom, the instantaneous positions$r i% of
the substrate atoms~surface phonons! and the electronic de
grees of freedom of the surface. In this paper, we focus
attention on the influence of surface phonons and neglec
coupling between the adatom and the electronic states o
surface. Therefore, the surface dynamics correspond on
a set of small displacements$ui% around the equilibrium po-
sitions $Ri% of the substrate atoms. As a result, we can
pand the potentialVAS in a Taylor series with respect to thes
displacements, as

VAS~x,$r i%!5VAS
0 ~x,$Ri%!1DHAS~x,$ui%!, ~2!

where VAS
0 is the contribution of the potential interactio

which is evaluated for the substrate equilibrium. The dep
dence of the potential with respect to the surface dynamic
thus contained inDHAS. This procedure allows us to reno
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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malize the Hamiltonian of the free adatom and to express
total Hamiltonian@Eq. ~1!# as the sum of three contribution
as

H5H̃A1HS1DHAS~x,$ui%!, ~3!

whereH̃A5HA1VAS
0 . From Eq.~3!, we define the system o

interest as the adatom dressed by the static field create
the substrate. The purpose of this work is thus to study
quantum dynamics of this system which is naturally d
scribed by the renormalized HamiltonianH̃A . However, the
adatom is not isolated and interacts with its surround
which is defined by the surface dynamics. Consequently,
substrate acts as a thermal bath which allows the adato
exchange energy and to relax. The dynamical coupling
tween the adatom and the thermal bath is described by
last contribution of Eq.~3!, namelyDHAS, which is assumed
to remain weak.

The first step to study the quantum dynamics of the a
tom consists in characterizing its quantum states. The t
dimensional periodicity of the system allows us to seek th
quantum states as Bloch states. However, the structur
these states depends strongly on the nature of the stati
teraction determined by the strength of the substrate co
gation. Indeed, for a sufficiently strong corrugation, the a
tom is trapped in an adsorption site leading to a lo
behavior of its quantum states. By contrast, a weak corru
tion allows the adatom to behave as a nearly free particle
a plane wave description appears to be more accurate. In
work, we are concerned with the first situation in which t
strong corrugation leads to a localization of the adatom. T
adsorption sites form a two-dimensional lattice ofN sites
located at the positions$xl%, l 51,...,N. Consequently, we
can take advantage of this local behavior to seek the Bl
states using an empirical tight-binding method. To do so,
first solve the renormalized HamiltonianH̃A reducing the
system to a single sitel and neglecting the presence of th
other sites. This procedure allows us to define a set of lo
ized orthogonal states$uw ls&%, wheres50,...,n corresponds
to the state number andl to the site. Due to the tunnelin
mechanism, the adatom can make transitions between s
which are located at different sites. As a result, the t
eigenstates ofH̃A can be expressed as a combination of lo
states centered at the adsorption sites, as

ufks&5
1

AN
(
ls

uw ls&csske
2 ikxl, ~4!

whereufks& denotes the Bloch states with two-dimension
wave vectork and with a band indexs. The coefficientscssk
can easily be computed since they represent the eigens
of the space Fourier transform ofH̃A within the local basis
representation. The corresponding eigenenergies are th
ergy bandsEks .

At this step, the knowledge of the local basis allows
to describe the motion of the adatom under the influence
the renormalized Hamiltonian. We can study the quant
dynamics of the adatom either in the local basis or in
extended Bloch basis. In the following, we shall study t
diffusive motion of the adatom using a quantum kine
Downloaded 10 Aug 2003 to 128.135.132.83. Redistribution subject to A
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equation. This equation is based on a real space analys
the motion of the adatom. Therefore, the choice of the lo
basis seams to be more relevant. However, the tunneling
cess induces a mixing of the local states leading to the b
character of the true eigenstates. To take into account
mixing and to work in the real space, we follow Efrim
et al.14,15 and introduce a third basis which mixes the loc
basis and the extended Bloch basis. This new basis is for
by Wannier states which are written as

ufxs&5
1

AN
(

k
ufks&eikxl, ~5!

where x5xl is a discrete index introduced to simplify th
notation. Finally, the Hamiltonian of the whole system c
be expressed in the Wannier representation, as

H5(
s

(
xx8

ufxs&H̃As~xx8!^fx8su1HS1(
ss8

(
xx8

ufxs&

3DHss8~xx8!^fx8s8u, ~6!

where DHss8(xx8)5^fxsuDHASufx8s8& is an operator
which acts in the space of the states of the thermal b
only. The diagonal elements of this Hamiltonian character
the fluctuations of the energy of the adatom adsorbed i
site, fluctuations due to the coupling with the thermal ba
By contrast, the nondiagonal elements represent the in
ence of the surface dynamics on the tunneling mechan
As we shall see, these contributions induce two differ
processes which perturb the dynamics of the adatom i
different way.

B. Description of diffusion processes

The characterization of diffusion processes requires
knowledge of the space and time evolution of the distribut
function g(x,t). This function represents the probability o
finding the adatom at positionx and at timet. From this
distribution, we can compute, in principle, the self-diffusio
constant which is related to the long time limit of the me
square displacement of the adatom. Another way to do th
to use the phenomenological Fick’s law37 which describes
the self-diffusion and which is given by

]

]t
g~x,t !52D“

2g~x,t !, ~7!

whereD is the self-diffusion coefficient. By Fourier trans
form Eq.~7!, it is straightforward to show that the dispersio
relation associated to the hydrodynamic modes which co
spond to self-diffusion is expressed as

vq52 iDq2. ~8!

Therefore, the self-diffusion coefficient can be characteriz
from the knowledge of the behavior of the long waveleng
disturbance of the distribution function.

In our model Hamiltonian, the adatom is essentially
calized around an adsorption site and can realize transit
from site to site either by tunneling or by coupling with th
thermal bath. Consequently, the continuous nature of the
tion can be approximated by a discrete one using the W
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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nier representation. We thus introduce the probabi
gs(x,t) of finding the adatom in a bands and in a state
located around the sitex. Moreover, due to the dynamica
interaction with the substrate degrees of freedom, the
eigenstates of the adatom are not well defined. As a re
we must realize a statistical average over the states of
adatom using the density matrix formalism. Finally, we d
fine the distribution function as

gs~x,t !5Tr@eiLt ufxs&^fxsur#

5Bs~x,x,t !, ~9!

wherer and L denote the initial density matrix and the L
ouvillian associated to the whole system, respectively,
where the variableBs(x,x̄,t) is written as

Bs~x,x̄,t !5Tr@eiLt ufxs&^f x̄sur#. ~10!

In a general way, the variableBs(x,x̄,t) characterizes the
coherence between the weights of two Wannier statesuf x̄s&
andufxs& when the state of the adatom is written as a lin
superimposition of such a states. This measure of the co
ence, which is performed at timet, depends on the dynamica
evolution of the whole system and on its history from t
initial time t50. Note that the distribution functiongs(x,t)
is related to the diagonal elementBs(x,x,t). However, the
characterization of the diagonal elements of theB’s variables
is insufficient to properly describe the diffusive motion of t
adatom even if non diagonal elements do not appear ex
itly in the definition of the distribution function. Indeed, d
agonal and non diagonal elements mix in a complicated m
ner under the influence of the total Hamiltonia
Consequently, we have to study simultaneously the dyn
ics of these two kinds of variables. One way to achieve s
a procedure is to introduce the Wigner distribution34–37

which is defined as

f s~x,k,t !5(
r

Bs~x1r /2,x2r /2,t !e2 ikr . ~11!

The Wigner distribution is the central objet of our stu
which allows us to describe diffusion processes. It charac
izes the influence of both coherences and populations
yields the required distribution functiongs(x,t) simply by
performing the sum overk in Eq. ~11!. Moreover, one of the
advantages of the Wigner function is that it presents a for
resemblance to the one-particle distribution introduced
classical statistical mechanics. In the following, we thus
rive a quantum kinetic equation to define the time evolut
of this distribution and use the well-known theory from no
equilibrium statistical mechanics to obtain a microscopic
pression of the diffusion constant.

C. Quantum kinetic equation

To build a quantum kinetic equation for the Wigner d
tribution, we first consider the time evolution of theB vari-
ables. Then, performing a Fourier transform as in Eq.~11!,
we get the required kinetic equation.

Let us assume that at the initial timet50, there is no
statistical correlation between the adatom and the ther
bath. As a result, the initial density matrix can be written
Downloaded 10 Aug 2003 to 128.135.132.83. Redistribution subject to A
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whererA andrS denote the density matrix of the adatom a
of the surface, respectively. The thermal bath is suppose
be in thermal equilibrium at temperatureT and the density
matrix rS corresponds to the Boltzmann distribution. We c
therefore split the total trace into partial traces and expr
the B variables as

Bs~x,x̄,t !5TrA@rATrS@rSeiLt #ufxs&^f x̄su#, ~13!

where TrA and TrS stand for a partial trace over the degre
of freedom of the adatom and of the substrate, respectiv

To solve the dynamics of theB variables, we use the
projector technique introduced by Zwanzig.38 The projector
method has demonstrated its usefulness in eliminating ir
evant information from a system and extracting only the
formation that is desired. In our situation, the irrelevant
formation appears as the dynamics of the surface degree
freedom since we are interested in the quantum dynamic
the adatom, only. From Eq.~13! the dynamics of the sub
strate is naturally eliminated due to the partial trace TrS per-
formed over the states of the substrate. Therefore, follow
Zwanzig’s method and performing a second order pertur
tion theory with respect to the couplingDHAS, it is straight-
forward to show that theB variables satisfy the equation o
motion

]

]t
Bs~x,x̄,t !5 i ^eiLt^L&Sufxs&^f x̄su&2E

0

t

dt^eiL ~ t2t!

3^DLASe
iL 0tDLAS&Sufxs&^f x̄su&, ~14!

where^¯&S stands for an average over the surface degr
of freedom, i.e., TrS@¯rS#. In Eq.~14!, L0 is the Liouvillian
associated to the free Hamiltonian, i.e., the Hamiltonian
the whole system when the coupling is equal to zero, a
DLAS is the Liouvillian operator which corresponds
DHAS. The partial trace over the substrate degrees of fr
dom leads to a redefinition ofH̃A to incorporate the average
value of the coupling Hamiltonian. However, to keep
simple notation, we do not change the expression of the
vious Hamiltonians and proceed to the following correspo
dence

H̃A→H̃A1^DHAS&S ,
~15!

DHAS→DHAS2^DHAS&S .

After some algebraic manipulations, the development of
~14! allows us to perform a Fourier transform and to obta
the general quantum kinetic equation for the Wigner dis
bution, as

]

]t
f s~x,k,t !1

i

\ (
x8

H̃As~0x8!e2 ikx8~ f s~x1x8/2,k,t !2 f s~x

2x8/2,k,t !!

52(
s̄ x̄k̄

E
0

t

dt J~x,k,s,x̄,k̄,s̄,t! f s̄~ x̄,k̄,t2t!, ~16!

where the memory kernelJ(x,k,s,x̄,k̄,s̄,t) is written as
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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J~x,k,s,x̄,k̄,s̄,t!

5
1

N (
rr̄

(
x8s8

(
x9s9

ei ~ k̄r̄2kr !

3^DHss8~ x̄1 r̄ /2,x8,0!DHs8s~x9,x1r /2,t!&S

3UAs8
1

~x8,x9,t!UAs~x2r /2,x̄2 r̄ /2,t!dss̄ds8s9

2^DH s̄s~ x̄1 r̄ /2,x8,0!DHss̄~x2r /2,x9,t!&S

3UAs
1 ~x8,x1r /2,t!UAs̄~x9,x̄2 r̄ /2,t!ds8sds9s̄1c.c.

~17!

In Eq. ~17!, UAs
1 (x,x8,t) is the matrix element of the evolu

tion operator of the adatom, i.e., when the coupling Ham
tonian is equal to zero. It characterizes the free propaga
of the adatom in a bands, between two states located arou
the sitesx andx8. The left-hand side of Eq.~16! character-
izes the coherent motion of the adatom in the bands which
involves tunneling mechanism, only. By contrast, the rig
hand side of Eq.~16! represents the influence of the therm
bath on the dynamics of the adatom. This contribution
nonlocal in space and includes all the history of the coupl
between the adatom and the thermal bath. Note that to ob
Eq. ~16! we use the rotating wave approximation~RWA! in
order to neglect the dynamical coupling between the coh
ences involving Wannier states associated to different ba
Such an assumption is justified by the large differences in
energy of the different bands as we shall see later for
system H/Cu.

Due to the nonlocality, Eq.~16! cannot be solved exactl
and only the use of relevant approximations will allow us
reach the microscopic expression of the diffusion consta

The memory kernelJ(x,k,s,x̄,k̄,s̄,t) @Eq. ~17!# in-
volves the correlation functions of the coupling Hamiltoni
DHAS. The characteristic time of this kernel is the corre
tion time tc of the heat bath and is about 10210– 10212s for
the substrate phonons. We thus assume that this time sc
small compare to the time evolution of the Wigner distrib
tion. Indeed, since the Wigner distribution represents the
herence between states which lie in a given band, its cha
teristic time is related to the amplitude of the tunneli
mechanism. It is well known that this amplitude is very we
and ranges betweenVt510220 and Vt510210eV when the
adatom is in its ground state. As a result, the assump
Vt3tc!\ is fully valid and allows us to invoke two ap
proximations in order to simplify Eqs.~16! and ~17!. First,
we use the Markovian limit of the kinetic equation and se
ond, we neglect the nondiagonal element of the evolut
operatorUAs

1 (t). The last assumption means that over a ti
scale of abouttc , the adatom does not have enough time
make a transition to a neighboring site. Moreover, we
sume that different types of interaction between the ada
and the thermal bath are uncorrelated. Consequently, the
relation function of two different matrix elements of the co
pling Hamiltonian vanishes and only the auto correlat
functions are not equal to zero. Then, since we are intere
by the long wavelength behavior of the distribution functio
Downloaded 10 Aug 2003 to 128.135.132.83. Redistribution subject to A
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we use the continuum approximation to develop the le
hand side of Eq.~16!.39

As a result, the quantum kinetic equation is written a

]

]t
f s~x,k,t !1vks “ f s~x,k,t !

51
1

N (
k̄x̄s̄

Ws̄,x̄→s,xf s̄~ x̄,k̄,t !2Ws,x→s̄,x̄f s~x,k̄,t !

1
Gs

N (
k̄

~ f s~x,k̄,t !2 f s~x,k,t !!, ~18!

wherevks5“Esk is the velocity of the adatom in the bands
and where

Ws̄,x̄→s,x5
2

\2 ReE
0

`

dt^DH s̄s~ x̄,x,0!DHss̄~x,x̄,t!&S

3UAs
1 ~t!UAs̄~t !,

~19!

Gs̄5(
x,s

2

\2 ReE
0

`

dt^DH s̄s~ x̄,x,0!DHss̄~x,x̄,t!&S

3UAs
1 ~t!UAs̄~t !.

The left-hand side of Eq.~18! corresponds to the free forc
Boltzmann equation which describes the adatom as an e
tation moving freely in the bands. The right-hand side of
Eq. ~18!, which represents the development of the mem
kernel @Eq. ~17!#, exhibits two contributions. The first on
appears as a Pauli master equation and characterizes inc
ent transitions between Wannier states induced by the c
pling with the thermal bath. It has been shown by Efrim
et al.14,15 that the rate for such a transitions, name
Ws̄,x̄→s,x , describes different kinds of processes and can
written as

Ws̄,x̄→s,x5Ws̄ x̄→s,x
L 1Ws̄→s

V dx,x̄ . ~20!

In Eq. ~20!, WL characterizes a lateral transition which i
volves two different sites andWV stands for a vertical tran
sition which takes place between two different bands bu
the same site. In each case, the rates are related thems
by the well-known detailed balance equation. Note tha
lateral transition can occur either in the same band or
tween two different bands. The second contribution of
right-hand site of Eq.~18! describes the dephasing mech
nism responsible for the destruction of the coherence of
nondiagonal elements of theB variables.

Finally, reducing our analysis to transitions betwe
nearest neighbor sites, the quantum kinetic equation is g
by
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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]

]t
f s~x,k,t !1vks “ f s~x,k,t !

51
Gs

N (
k̄

~ f s~x,k̄,t !2 f s~x,k,t !!

1
1

N (
k̄s̄

W̃s̄→s f s̄~x,k̄,t !2W̃s→s̄ f s~x,k̄,t !

1a2Ws̄→s
L ¹2f s̄~ x̄,k̄,t !, ~21!

whereWs̄→s
L 5Ws̄x→sx6a andW̃s̄→s52Ws̄→s

L 1Ws̄→s
V and

where a denotes the lattice parameter.

D. Self-diffusion coefficient

The quantum kinetic equation is formally equivalent
the linearized Lorentz–Boltzmann equation which descri
diffusion processes in classical fluid.37 Resibois40 has intro-
duced a method to obtain a microscopic expression of
self-diffusion coefficient from this kinetic equation. Ther
fore, we use the same procedure which consists in doing
Fourier Transform of the quantum kinetic equation and
performing a perturbative theory to reach the dispersion
lation of the hydrodynamic modes@Eq. ~8!#. These modes
correspond to slowly varying disturbances of the Wigner d
tribution, in space and time, around its equilibrium valu
From Eq.~21!, it is easy to show that this equilibrium co
responds to an homogeneous distribution in real space an
reciprocal space. The equilibrium distribution depends o
on the energy of the bands and is expressed as

f s
eq5

1

N

e2Es /kT

Sse2Es /kT , ~22!

whereEs is the energy of the bands evaluated at the cente
of the Brillouin zone. Note thatf s

eq does not depend on th
wave vectork since we have assumed that the tunnel
amplitude is sufficiently small to neglect the dispersion
the energy bands. Therefore, we seek a solution of the kin
equation as

f s~x,k,t !5 f s
eqhs~x,k,t !, ~23!

where hs(x,k,t) characterizes the disturbance around
equilibrium. In order to use the method described by Re
bois, it is convenient to introduce an abstract linear vec
space notation by considering the distributionhs(x,k,t) as
the component of the vectoruh(x,t)& in the representation
$us,k&%. The scalar product in this abstract vector space
defined with respect to the transformation Eq.~23!, as

^h~x,t !uh8~x,t !&5(
sk

f s
eqhs* ~x,k,t !hs8 ~x,k,t !. ~24!

Since the quantum kinetic equation@Eq. ~21!# is linear,
the dispersion relation of the hydrodynamic modes can
defined considering the behavior of one Fourier compon
of the distribution, only. In addition, we assume that t
diffusion of the adatom is ‘‘isotropic’’ on the~100! surface,
i.e., the diffusion coefficient is the same along the directio
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of high symmetry. We thus focus our attention on the diff
sion along one such direction, denoted byx, and seek a so-
lution as

uh~x,t !&5uh~q,t !&ei ~qx2vqt !, ~25!

whereq is the wave vector component parallel to thex di-
rection. Using Eq.~23! and substituting Eq.~25! into Eq.
~21!, the quantum kinetic equation can be formally expres
as

~R̂1 iquxv̂1q2ŴL!uh~q!&5 ivquh~q!&, ~26!

whereux is a unit vector parallel to thex direction and where
v̂ andŴL are the operators associated to the band velocit
the adatom and to the rate for the lateral transitions, resp
tively. In Eq.~26!, R̂ stands for the relaxation operator whic
accounts for the dephasing mechanism and for the incohe
transitions characterized by the rateW̃. The explicit expres-
sion of these operators is easily defined comparing Eq.~21!
and Eq.~26!, as

^ksuR̂uk̄s̄&5S Gs1(
s8

W̃s→s8D dss̄dkk̄

2
1

N
~Gsdss̄1W̃s→s̄!,

^ksuŴLuk̄s̄&5
1

N
Ws→s̄

L dkk̄ , ~27!

^ksuv̂uk̄s̄&5vskdss̄dkk̄ .

Consequently, from Eq.~26!, the kinetic problem is formu-
lated in terms of an eigenvalue problem for the relaxat
operatorR̂. The equilibrium distribution, which correspond
to a spatially homogeneous and time-independent distr
tion, is the eigenvectoruh(0)&51 of the relaxation operato
associated to the eigenvaluev (0)50. Note that using the
definition of the scalar product Eq.~24!, the eigenvector
uh(0)& is normalized. For long-wavelength disturbance, t
wave vectorq is thus assumed to be a small parameter a
the perturbed eigenvalues of the relaxation operator can
determined using a perturbative theory. Therefore, follow
Resibois,37,40 we seek solutions of Eq.~26! as

vq5v~0!1v~1!q1v~2!q21¯ ,
~28!

uh~q!&5uh~0!&1uh~1!&q1uh~2!&q21¯ .

Substituting Eq.~28! into Eq. ~26!, it is straightforward to
show thatv (1) is equal to zero and that the first correction
the eigenfrequency is expressed as

v~2!52 i ^h~0!uŴLuh~0!&

2 i ^h~0!uuxv̂~R̂2 iv~0!!21uxv̂uh~0!&. ~29!

As a result, the microscopic expression of the diffusion c
efficient is determined comparingv (2) @Eq. ~29!# and the
dispersion relation of the hydrodynamic modes given by E
~8!. The resulting coefficient is expressed as
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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D5(
ss̄

f s
0a2Ws→s̄

L

1
1

Nx
(
ss̄

(
kxk̄x

f s
0vkxs^kxsuR̂21uk̄xs̄&v k̄xs̄ , ~30!

whereNx is the number of sites along thex direction.
The self-diffusion coefficient exhibits two contribution

The first contribution, which is proportional to the rate
lateral transitions, is the incoherent diffusion constant
fined by Efrimaet al.14,15It describes processes in the cour
of which the surface dynamics induce fluctuations of the t
neling matrix elements between two Wannier states. A
result, the adatom, initially localized in a Wannier state,
allowed to make a transition to another state by creating
annihilating surface phonons. If the transition correspond
an ‘‘in band process,’’ i.e., if the states belong to the sa
band, the process is clearly identified as phonon media
tunneling. By contrast, if the transition involves differe
bands, then the process corresponds to phonon induced
sitions.

The second contribution occurring in Eq.~30! is the co-
herent part of the diffusion constant and characterizes h
the dephasing limits the band motion of the adatom. F
mally, if the adatom moves in a coherent manner, its eig
state is described by a superimposition of localized Wan
states. The phases between each component of this sta
related to each other when the time evolution is described
the Hamiltonian of the adatom only. However, during th
time evolution, the coupling with the thermal bath induc
random fluctuations of each phase which destroys the co
ence of the state. As a result, the nature of the motion of
adatom evolves from a coherent one to an incoherent
Clearly, the coherent part of the diffusion constant, is rela
to the competition between the tunneling mechanism, wh
tends to preserve the coherence, and the dephasing con
which characterizes the damping process. Note that Eq.~30!
does not exhibit an explicit dependence with respect to
tunneling matrix elements. However, the band velocityvks ,
related to the gradient of the energy band, depends on
tunneling amplitude.

Note that the name ‘‘coherent diffusion coefficien
used to describe this second contribution of the diffus
constant is introduced to distinguish this contribution fro
the first contribution. However, dephasing limited band m
tion leads to the destruction of the coherence and induce
course, an incoherent motion.

III. APPLICATION TO SELF-DIFFUSION OF
HYDROGEN ON CU„100…

A. Potential interaction and quantum states of the
adatom

The modeling of the system H/Cu~100! is performed us-
ing the interaction potential introduced by Wonchobaet al.28

This potential consists of a sum of pairwise interactions
tween the H atom and each copper atom. Each interac
has the form of a Morse potential and the parameters ca
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found in Refs. 28 and 31. The substrate is supposed to
unreconstructed and the~100! face exhibits a square unit ce
with a lattice parametera52.5327 Å.

The minimization of the potential energy leads to
equilibrium configuration where the adatom is located in
hollow site, i.e., at the center of the unit cell. The diffusio
valley belongs to thê110& direction and the height of the
potential barrier between neighboring unit cells is equal
0.51 eV. To investigate the diffusive motion of the adato
along this direction, we reduce the system to a o
dimensional one. Therefore, the renormalized Hamilton
includes the kinetic Hamiltonian and the potential ener
experienced by the hydrogen atom along the diffusion vall
Denoting by x the ^110& direction, the potential energy
VAS

0 (x) is thus obtained performing a minimization of th
full potential with respect to the two orthogonal degrees
freedomy andz.25

To characterize the local basis, we reduce the poten
to a single well problem and use the FBR–DVR meth
based on a Gauss–Hermite quadrature.41 We thus obtain the
eigenergies$Es% of the adsorbed atom and the correspond
localized wave functions$w ls(x)%. These eigenfunctions ar
then used to evaluate the matrix elements of the poten
between states located in neighboring sites. An accurate
culation of these matrix elements requires the accurate
scription of the tails of the localized wave functions, i.e., t
value of the wave functions in the region between two nei
boring sites. However, the FBR–DVR method does not
low us to obtain such accuracy. Indeed, a localized w
function is expanded in terms of Hermite polynomials. Sin
the convergence of the calculations requires the use of h
order polynomials, the tail of the wave function exhibits o
cillations whose the shape depends on the number of D
points. These oscillations, which are extremely small, do
influence the calculation performed to evaluate matrix e
ments which involve wave functions localized in the sam
site. By contrast, they have a dramatic influence on the
culation of matrix elements which mix wave functions l
cated at different sites. To solve this problem, we use a se
classical approach to build the localized wave functions fr
the knowledge of the eigenenergies. This method, which
known as the uniform approximation, is described in de
in Ref. 42. The idea is that the qualitative shape of a loc
ized wave function is dictated by the disposition of its cla
sical turning points. For the single well problem, a localiz
wave function describes a bound motion between two tu
ing points. It exhibits oscillations in the classical region, i.
between the two turning points, and dies away outside. A
result, this wave function is expressible in terms of the c
responding wave function of the harmonic oscillator. T
wave functionw ls(x) of thesth state localized in thel th site
is thus written as

w ls~x!5A2s112j2~x!

Ks~x!
Cs~j~x!!, ~31!

whereCs is thesth wave function of the harmonic oscillato
and whereKs(x)5A2m(Es2VAS

0 (x)/\. The functionj(x)
is defined by the transcendental equation
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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E
2j0

j

~j0
22j2!dj5E

t

x

Ks~x!dx, ~32!

wherej05A2s11 and wheret denotes the classical turnin
point located at the left-hand side of the minimum of t
potential well.

As shown in Table I, the local basis contains sev
bound states with an energy lower than the potential bar
The ground state corresponds to an energy equal to 0.05
and the harmonic frequency is about 100.9 meV. The sec
column of Table I contains the tunneling matrix eleme
between localized states in neighboring unit cells which h
the same energy. The extremely small amplitude of the t
neling leads to a dispersion of the five lowest energy ba
less than 0.01 meV. These results show that the use o
Markovian limit to reach the final expression of the kine
equation is a good approximation. However, the dispers
of the most excited band, equal to 1.92 meV, leads t
propagation time of the adatom abouttp'0.1 ps. We thus
expect that the most excited band will contribute to the d
fusion at high temperature, only. Since the correlation ti
of the phonons bath decreases with the temperature, we
sume that the Markovian limit remains valid.

B. Surface dynamics

To characterizes the surface phonons, we use an em
cal force constant model implying adjustable parameter
order to fit the previous experimental and theoretical data
has been shown that the surface relaxation of the Cu~100!
substrate remains small and represents a correction w
ranges between 1% and 3% with respect to the b
structure.43 As a result, the~100! copper surface has esse
tially a bulk like geometry. However, for such an open fac
it has been mentioned44 that substantial charge redistributio
in the surface region can change the surface force cons
value even for a surface with a geometry like the bulk.

The phonon dynamics are thus solved using a 50-la
slab calculation.45 We restrict the interaction to neare
neighbors and introduce the nearest neighbor bulk force c
stant fB951.605 eV Å22. This value is in good agreemen
with previous calculations performed to solve the~110!
surface.46 The surface force constants have been chosen
pirically to reproduce the surface dynamics. Note that, a f
correction model, i.e., neglecting the change in the surf
force constants, leads to results in good agreement with m
sophisticated calculations44 since the error for the frequen
cies of the surface phonons is less than 1.5 meV.

TABLE I. Energies of the seven localized bound states and tunneling
plitude between similar states lying in neighboring sites.

Level E ~eV! Vt ~eV!

0 0.0538 5.042~214!
1 0.1547 21.340~211!
2 0.2432 1.374~209!
3 0.3206 27.316~208!
4 0.3874 2.237~206!
5 0.4439 24.115~205!
6 0.4896 4.796~204!
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We show on Fig. 1 the projection of the density of sta
of the substrate phonons on the~100! copper surface. The
full line characterizes the density of states associated
phonons polarized along the direction normal to the surf
whereas the dashed line is related to phonons polarized a
the direction parallel to the surface. The phonon spectr
ranges between 0 and 29.2 meV. The parallel density
states exhibits two peaks corresponding to surface mo
and which are located at 10.3 meV and 24.4 meV, resp
tively. The frequencies of the surface modes polarized al
the normal to the surface are centered around 13 meV, i.e
12.4 meV and 14.4 meV, respectively. Note that in the l
frequency region, the density of states behaves asv2 as pre-
dicted by the well-known Debye model for a thre
dimensional solid.39

From these calculations, we are able to characterize
interaction between the adatom and the substrate phon
We thus analyze one-phonon and two-phonon processes
forming a second order expansion of the interaction poten
VAS @Eq. ~2!# with respect to the displacements of the su
strate atoms. The coupling Hamiltonian between the ada
and the surface phonons can thus be defined and allows
evaluate the correlation functions required to calculate
rates and the dephasing constant@Eq. ~19!#. These correla-
tion functions are expressed in terms of the correlation fu
tions of the displacements of the substrate atoms and
computed from the knowledge of the phonon density
states.45

C. Energy corrections and dephasing constants

As mentioned in the theoretical part, the averaged va
of the coupling HamiltonianDHAS over the thermal bath
degrees of freedom leads to a correction of the renormal
Hamiltonian of the adatom@Eq. ~15!#. We show in Fig. 2 the
temperature dependence of the energy corrections of
seven bound states. Note that only two-phonon proce
induce a nonvanishing correction to the energy levels. I

FIG. 1. Projection of the normalized density of states of the subst
phonons on the~100! copper surface. The full line characterizes the dens
of states associated to phonons polarized along the direction normal t
surface. The dashed line is related to phonons polarized along the dire
parallel to the surface.

-
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general way, the energy correction increases with the t
perature and decreases as the state number increases
different states do not experience the same correction
this difference evolves with the temperature. Indeed, the s
of the ground state is equal to 12.30 meV atT5100 K and
increases up to 30.38 meV atT5300 K. By contrast, the
correction to the most excited bound state increases f
8.26 meV to 20.32 meV in the same range of tempera
leading to a dispersion of the energy shift which varies fr
4.04 meV to 10.06 meV. Two-phonon processes induc
small correction of the tunneling matrix elements. At lo
temperature, i.e.,T510 K, this correction leads to a shift o
the tunneling amplitude which is equal to 1.36% in t
ground state and to 1.12% in the most excited state. As
temperature increases, the correction becomes more im
tant but remains weak since it is lower than 15% atT
51000 K.

The behavior of the dephasing constant@Eq. ~19!# with
respect to the temperature is shown on Fig. 3 for the differ
bound states. As for the correction of the energy, the dep
ing constant decreases as the energy of the bound stat
creases. AtT5100 K, the dephasing constant of the grou
state is equal to 9.5 meV whereas the constant character
the more excited state is equal to 4.3 meV. The dispersio
the value versus the energy of the bands is thus equal to
meV. This dispersion increases with the temperature
reaches, for example, a value equal to 58.1 meV aT
5300 K. For this temperature, the dephasing constant of
ground state is equal to 0.10 eV. At low temperature,
dephasing constant shows a power law dependence o
form G}Ta. Fitting the curve of the ground state leads to
value for the parametera equal toa'3.2060.05. Since the
different constants exhibit a similar temperature depende
they are characterized by the same power law. Note that
two-phonon processes contribute significantly to the deph

FIG. 2. Temperature dependence of the averaged value of the cou
between the adatom and the surface phonons. Only the correction o
bound states energies is shown.
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ing mechanism. For example, atT5300 K, the contribution
of one-phonon processes represents about 231023% of the
dephasing constant of the ground state.

D. Incoherent, coherent, and full self-diffusion
coefficient

In this section, we first present the results concerning
behavior of the incoherent rates. However, since the inco
ent part of the diffusion coefficient@Eq. ~30!# is directly re-
lated to the rates of interest@Eqs. ~19! and ~20!#, we focus
our attention on the values of this latter parameter. Th
from the knowledge of the dephasing constant and of
rates for the incoherent hops, we characterize the cohe
contribution of the diffusion coefficient. Finally, the full co
efficient is presented.

In Fig. 4 we show the temperature dependence of
incoherent diffusion coefficientDi for one-phonon and for
two-phonon processes, respectively. Clearly, as for
dephasing mechanism, two-phonon processes represen
dominant contribution of the incoherent rates, the on
phonon contribution corresponding to a correction less t
0.05%. The diffusion coefficientDi shows an activated tem
perature dependence at high temperature, i.e., typically foT
greater than 100 K. This behavior allows us to fit the cur
with an Arrhenuis law of the formDi5D0e2DE/kT. The ac-
tivation energy is thus equal toDE50.4960.01 eV and the
prefactor is given byD0'2.4431023 cm2/s. As shown in
Table II, the incoherent diffusion constant is equal toDi

51.29310211cm2/s at T5300 K and reaches the valueDi

51.2031025 cm2/s atT51000 K. Note that the rates asso
ciated to one-phonon and two-phonon processes beh
similarly versus the temperature since both follow
Arrhenius-type law.

At low temperature, typically forT lower than 100 K,
the behavior ofDi exhibits a change and varies more slow
with the temperature. Clearly, the curve does not follow

ng
he

FIG. 3. Temperature dependence of the dephasing constant of each b
state.
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Arrhenius-type law in this range of temperature. Moreov
one-phonon and two-phonon processes do not exhibit
same temperature dependence. Therefore, a fit of the
curves forT lower than 50 K shows a linear temperatu
dependence for the one-phonon contribution and a po
law dependence for the two-phonon contribution. In this l
ter case, the parametera characterizing the power law wa
found to be equal toa'3.2660.05. Note that the tempera
ture at which the shape ofDi exhibits a change of behavio
does not correspond to a particular value. We just iden
T'100 K as the temperature around which the change
curs.

The variation of the coherent contribution of the diff
sion coefficientDc versus the temperature is shown on F

FIG. 4. Temperature dependence of the incoherent part of the diffu
coefficient. The full line corresponds to two-phonon contribution wher
the dashed line is related to one-phonon contribution.

TABLE II. Temperature dependence of the incoherent and coherent co
butions of the diffusion coefficient.

T ~K! Di ~cm2/s! Dc ~cm2/s!

60 6.84~226! 9.93~225!
80 1.55~225! 4.71~225!

100 5.29~225! 6.25~225!
120 5.28~223! 5.54~223!
140 1.68~220! 1.03~220!
160 1.72~218! 6.13~219!
180 6.82~217! 1.49~217!
200 1.35~215! 1.90~216!
220 1.59~214! 1.51~215!
240 1.26~213! 8.44~215!
260 7.41~213! 3.58~214!
280 3.14~212! 1.22~213!
300 1.29~211! 3.52~213!
400 1.47~209! 1.33~211!
500 2.72~208! 1.13~210!

1000 1.20~205! 1.07~208!
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5. At high temperature, typically forT greater than 100 K,
Dc increases with the temperature. However,Dc does not
show an Arrhenius-type law and exhibits a slower tempe
ture dependence compared toDi . As shown in Table II,Dc

is smaller thanDi by three orders of magnitude atT
51000 K. This difference decreases as the temperature
creases and two orders of magnitude separate the two
tributions atT5300 K. The main difference betweenDc and
Di occurs at low temperature. Indeed, for a temperat
lower than 100 K,Dc exhibits a completely different behav
ior. First, Dc reaches a minimum value equal to 4.3
310225cm2/s for T588.50 K. Then,Dc shows a change in
its behavior and increases as the temperature decreases.
sequently,Dc becomes greater thanDi in this temperature
range. The low temperature behavior of the coherent con
bution Dc is clearly related to the variation of the dephasi
constant. Indeed, when the temperature is lower than 50
the curveDc versus the temperature can be fitted by a pow
law. The parametera was found to bea'23.2260.05.
This value is close to the absolute value of the expon
which characterizes the low temperature behavior of
dephasing constant, i.e.,a'3.2060.05 ~see Sec. III C!, im-
plying the relationDc}1/G.

The full self-diffusion coefficientD is the sum of both
the coherent and incoherent mechanisms of diffusion@Eq.
~30!#. As a result, the relative contribution of these two term
will depend on the temperature of interest~Fig. 5!. There-
fore, at high temperature,D is dominated by the incoheren
contribution and is related to a thermally activated proces
The temperature dependence ofD is thus described by an
Arrhenius law with the same parameters as those introdu
to characterize the variations ofDi . However, as the tem
perature decreases, the relative influence of the coherent
Dc increases. WhenT is close to 100 K, the two contribu

n
s

ri-

FIG. 5. Temperature dependence of both the incoherent and the coh
part of the diffusion coefficient. The full line corresponds to the full diff
sion coefficient whereas the dotted line and the dashed line are related
incoherent and to the coherent contribution, respectively.
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tions Dc and Di are nearly the same. Consequently, bo
coherent and incoherent mechanisms contribute to the d
sion constant andD moves away from the incoherent curv
~Fig. 5!. As the temperature decreases, the coherent co
bution dominates the diffusion process and the coefficienD
reaches the coherent curve. From these results, it seem
teresting to introduce a characteristic temperature which
lows us to separate the incoherent and the coherent reg
for the diffusion coefficient. We thus define this crossov
temperatureT* as the temperature which corresponds to
same value forDc andDi , i.e.,Dc(T* )5Di(T* ). As shown
on Fig. 5, the crossover temperature is thus equal toT*
5125 K.

IV. DISCUSSION

The previous results clearly show that the diffusi
mechanism results from a dynamical interaction between
adatom and the surface whose main contribution invol
two-phonon processes. Furthermore, the temperature de
dence of both the incoherent and the coherent part of
diffusion coefficient changes around 100 K.

The relative contribution of one-phonon versus tw
phonon processes is directly connected to the first deriva
and to the second derivative of the adatom-surface poten
respectively. Consequently, the weight of each contribut
depends on the matrix elements of these derivatives use
express the dephasing constant and the incoherent rates
dephasing constant associated with a particular state is
fined in terms of the correlation functions of the coupli
Hamiltonian involving transitions between this state and
the other states@Eq. ~19!#. However, the coupling betwee
states located in different sites are extremely weak and
main contribution is thus due to matrix elements which co
nect states lying in the same site. As a result, two kinds
processes can take place in terms of phonon induced fluc
tions of a given state and phonon induced transitions. S
the phonon spectrum ranges between 0 and 30 meV, r
nant transitions occur between the most excited states
and take place at high temperature when the populatio
these states becomes significant. Therefore, the main co
bution of dephasing is due to the fluctuations of the diago
matrix elements of the coupling. When the adatom is loca
close to its equilibrium position, only the matrix elements
the second derivative of the potential are important lead
to the negligible effect of the one-phonon processes. By c
trast, the incoherent diffusion coefficient is related to t
correlation functions of the nondiagonal elements of the c
pling which involve states located in neighboring site
Therefore, both one-phonon and two-phonon processes
involved in the incoherent transitions. The fact that tw
phonon processes represent the main contribution re
from the competition between the matrix elements of the fi
and second derivative of the potential, respectively.

For both the coherent and incoherent diffusion consta
the occurrence of a change in the temperature dependen
due to the competition between processes occurring in
ground state and those which take place in the excited st
At low temperature, only the ground band is significan
filled and the motion of the adatom can be viewed as a o
Downloaded 10 Aug 2003 to 128.135.132.83. Redistribution subject to A
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band motion. The coherent contribution of the diffusion c
efficient,Dc , is proportional to the ratio of the square of th
velocity of the adatom in this band to the dephasing const
As shown on Fig. 5, as the temperature increases the dep
ing constant increases leading to the diminution ofDc .
However, when the temperature reaches 100 K, the pop
tion of the first excited band is sufficient so that cohere
diffusion takes place in this band. Since the tunneling am
tude, and thus the velocity, increases with the energy of
band, the coherent diffusion in the first excited band is m
important compared to diffusion in the ground state band.
a result, the increase ofDc with the temperature characte
izes the transition between the motion in the ground ba
and the motion in the first excited band. The temperature
which such a mechanism occurs is related to the competi
between the Boltzmann factor and the tunneling in the fi
excited state. The analysis of the numerical data shows
the temperature of interest is equal to 102 K. The same
planation can be used to interpret the behavior of the in
herent part of the diffusion constantDi around 100 K. In-
deed, the temperature dependence ofDi shows that the
incoherent coefficient related to the first excited band
equal to the incoherent coefficient of the ground band a
temperature equal to 104 K.

At high temperature, the diffusion results from a the
mally activated process in terms of phonon induced incoh
ent hops. The activation energy is different from the class
activation barrier, i.e., the potential barrier between nei
boring sites equal to 0.51 eV, and corresponds to the en
of the most excited state. Note that we did not include
states lying above the corrugation. At very high temperatu
these states may participate in the motion of the adat
Nevertheless, our results are in good agreement with pr
ous calculations performed using quantum version of the
theory. At T5300 K, the diffusion constant for a rigid sub
strate was found to range between 1.31310210cm2/s and
5.01310210cm2/s.21–30 Landerdaleet al.24 have reported a
value equal to 6.97310211cm2/s using a classical harmoni
oscillator model. The correction induced by the motion
the surface was found to be extremely small26–29 and corre-
sponds to a factor lesser than 5 atT5300 K. The wave
packet analysis performed by Zhanget al.31 show a diffusion
constant equal to 8.64310210cm2/s at the same temperatur
As shown in Table II, our calculations yield a diffusion co
efficient equal to 1.32310211cm2/s atT5300 K leading to a
difference of less than one order of magnitude with respec
these previous calculations. However, these previous res
were found using techniques which are fully different fro
the method we used and a direct comparison must be d
carefully.

The main advantage of our technique is the ability
describe the motion of the adatom at low temperature wh
both the coherent and incoherent mechanisms contribute
nificantly to the diffusion. Our results show that a transiti
occurs from a thermally activated regime to an almost te
perature ‘‘independent’’ regime at the crossover tempera
T* 5125 K. Below this crossover temperature, the diffusi
constant follows the coherent contribution and increases
the temperature goes to zero. This feature is easily un
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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standable since phonon induced dephasing depends o
population of surface phonons. Consequently, as the t
perature decreases, the population of phonons diminis
and the perturbation induced by the thermal bath disapp
leading to a divergence of the diffusion coefficient at ze
temperature which was found to scale asT2a with a'3.2.
For surface diffusion, there is no experimental data wh
reports this feature. However, the behavior of the diffus
coefficient at low temperature was extensively studied
hydrogen, muon and muonium diffusion in solid.47 In insu-
lators, where the thermal bath is essentially composed
phonons, it as been shown, from a theoretical point of vie
that the diffusion coefficient diverges at low temperature a
scales asT2a.48,49 The value of the parametera was found
to be 7 or 9. Nevertheless, this value depends strongly on
dimension of the system, on the strength of the interact
and on the shape of the phonon density of states. In f
experimental analysis in ionic insulators50 and compound
semiconductors51 indicate thata is generally closer to 3
rather than to 7 or 9. The first observation of aT27 tempera-
ture dependence was reported in a van der Waals cryst
solid nitrogen whose phonon spectrum is much closer to
Debye model.52

Unfortunately, there are no experimental data publish
for the system H/Cu~100! to compare with our calculations
However, Ho and co-workers have performed recent exp
ments using the scanning tunneling microscopy~STM! tech-
nique in order to determine the diffusion coefficient of h
drogen on Cu~100!.53 The authors have observed a transiti
between a thermally activated regime and a temperature
dependent regime and they report a crossover tempera
close to 60 K. Moreover, it is well established that such
transition occurs for hydrogen on metals. Gomer and
workers have shown that the system H/W~Ref. 4! and H/Ni
~Ref. 8! exhibit a transition for a temperature close to 150
and 100 K, respectively. In their experiments, the diffusi
constant, below the transition temperature, appears to
strictly temperature independent. Note that, for the sys
H/Ni~111!, the experimental situation remains unclear sin
Zhu and co-workers12 found a thermally activated regime a
low as 65 K and did not observe a temperature indepen
regime. They have observed a change in the diffusion c
stant around 100 K corresponding to a transition betw
two different thermally activated regimes. However, a the
retical analysis performed by Mattssonet al.33 has confirmed
the existence of a transition for this system.

In our calculations, the crossover is introduced due
phonon induced dephasing and leads to a smooth temp
ture dependence of the diffusion constant. In real syste
other phenomena can be responsible for the breaking o
coherent band motion such as disorder, lateral interacti
and other kinds of bosonic excitations than phonons. T
disorder can arise from lattice strain or surface defects~im-
purities, vacancies, steps, etc.!. Moreover, realistic experi-
ments are performed at nonzero coverage and lateral inte
tions between adatoms have been shown to play a cru
role to reduce the mean free path of the adatom.18 In addi-
tion, on metal surfaces, the relative influence of phon
versus electron–hole pair excitations is not clear. T
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electron–hole pairs in metals provide an energy dissipa
mechanism in addition to the coupling to phonons. In a p
vious work,17 it has been shown that the influence of the
excitations can be modeled in terms of a friction coefficie
The typical value of this parameter was found to be abou
or 3 meV. The friction coefficient can be associated to
dephasing constant. As a result, electron–hole pair exc
tions may play an important role in a temperature ran
where the dephasing constant due to phonon fluctuation
about 3 meV, i.e.,T,50 K.

Consequently, all these processes would have to be
cluded in our calculations to reach the final value of the f
diffusion constant. Since some of them are temperature
dependent, as for the inhomogeneous disorder, the final
pression of the coherent part of the diffusion constant m
become independent of the temperature. Moreover, the o
sources of scattering contribute to the increase of the dep
ing constant leading to a change of the value of the crosso
temperature.

In addition, we have supposed that the quantum dif
sion of the adatom could be described using a o
dimensional model. Such an approximation is valid if w
assume an adiabatic decoupling between the different
grees of freedom of the adatom. Indeed, Baeret al.54 have
discussed the influence of the dimensionality on the ther
rate related to the transition from a subsurface hydro
atom to a surface site of a nickel crystal. The comparis
between the full three-dimensional~3D! calculations and the
reduced two-dimensional~2D! and one-dimensional~1D!
calculations is performed. The authors have shown that
3D calculation exhibits the lowest thermal rate. At low tem
perature, the tunneling rate is nearly temperature indep
dent and the crossover temperature was shown to decrea
the dimensionality of the calculations increases. Con
quently, the authors have pointed out that the tunneling
is very sensitive to a naive reduction of the dimensional
Such an approximation fails, first, because of the variation
the perpendicular zero-point motion along the reaction p
and second, because of the overestimation of the coher
between the two sites separated by the potential bar
However, the authors have shown that the adiabatic appr
mation dramatically improves the 1D calculation. For hydr
gen diffusion on the copper surface, the main contribution
the rates for incoherent hops along thex direction would
involve states associated to thex motion. As a result, we thus
expect a small change in the activation energy if the ze
point energies related to they andz coordinates are the sam
both at the center of the site and at the top of the poten
barrier along thex direction. Therefore, the incoherent diffu
sion constant for surface diffusion is related to the coeffici
in one dimension through a symmetry factor which acco
for motions along equivalent high symmetry direction
However, the dephasing constant associated to a given
may become more important for a full three-dimension
problem. Indeed, the coupling with substrate phonons m
induce transitions between states located in the same site
related to different coordinates. Consequently, in addition
the previous processes~disorder, lateral interactions, etc.!,
the dimension may affect the coherent part of the diffus
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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constant and would lead to a change in the estimation of
crossover temperature.
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