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The self-diffusion of hydrogen on th@00) copper surface is investigated using a quantum kinetic
equation approach. The dynamics of the adatom is described with a multiple-band model and the
surface phonons represent the thermal bath responsible for the diffusion mechanism. Using the
Wigner distribution formalism, the diffusive motion of the adatom is characterized in terms of the
correlation functions of the adatom—phonon interaction. The diffusion coefficient exhibits two terms
related to phonon mediated tunnelifigcoherent pajtand to dephasing limited coherent motion
(coherent pajt The competition between these two contributions induced a transition from a
thermally activated regime to an almost temperature independent regime at a crossover temperature
T*. A numerical analysis is performed using a well-established semiempirical potential to describe
the adatom—surface interaction and a slab calculation to characterize the surface phonons. These
calculations show that two-phonon processes represent the relevant contribution involved in the
adatom—phonon coupling. The temperature dependence of the diffusion constant is thus presented
and the relative contribution of the incoherent versus the coherent part is analyzed. Both
contributions exhibit a change of behavior around 100 K from an exponential to a power law
temperature dependence as the temperature decreases. This change is due to the confinement of the
motion of the adatom in the ground energy band at low temperature. The incoherent part is shown
to be the dominant contribution at high temperature and is characterized by an activation energy and
a prefactor equal toAE=0.49+0.01eV and Dy~2.44x10 3cn¥/s, respectively. At low
temperature, the power law dependence of the two contributions is different since the coherent part
increases slowly as the temperature decreases whereas the incoherent part decreases. The crossover
temperature is estimated to be equalto=125 K. BelowT*, the coherent part becomes the main
contribution and the diffusion constant exhibits an almost temperature independent behavior.
© 2000 American Institute of Physids$0021-960800)70227-3

I. INTRODUCTION (LOD).1**2 However, for hydrogen adsorbed on metals, the
o ) experimental information is more scarce, especially in the
Diffusion of hydrogen atoms on metallic surfaces plays g, temperature regime where quantum effects may be im-
crucial role in heterogeneous catalysis and in other Chemiceﬂortant. Measurements by Gomer and co-worker using FEM
and physical phenomena occurring at the ﬂu'd's‘)“dhave been in focus for many yedr$ They were the first to

mterIalc_e.tMor?(f)ver, ths dl_ffusrllon_oflhyo!r(igin 1S of fu dnda- show the existence of a transition from a thermally activated
mental interest from a basic physical point ol VIEw an gaveregime to an almost temperature independent regime as the
rise to extensive theoretical and experimental studies. Due

tf)emperature decreases. Their works have suggested that band
the small mass of hydrogen, quantum effects may become . .
) PP motion may play an important role at low temperature even
important, even at room temperature, and diffusion may OCr 1 bandwidth of the bands is extremelv small. Note that
cur in different ways, depending on the atom—surface inter- € ba o INe bands 1s extremely smatl. Tote that

omer and co-workers have shown that the system H/Ni

action, the coverage and the temperature. In a general wa o .
ef. 8 exhibits a transition for a temperature close to 100

three different mechanisms have been proposed to expla o
the diffusive motion of hydrogen as a function of the I However, Zhu and co-workershave performed recent

temperatur@? In the lowest temperature regime, the diffu- €XPeriments based on the LOD method which apparently
sion may occur by tunneling from site to site. As the tem-contradict the previous results since they found a thermally
perature increases, the adatom is localized in an adsorptigiftivated regime as low as 65 K. Unfortunately, the authors
site and diffusion consists in thermally activated uncorrelateddo not present a satisfactory explanation for this discrep-
hopping between neighboring sites. At still higher tempera@ncy” and the experimental situation remains uncertain for
ture, the jumps exhibit correlations and the diffusion be-this system.
comes more fluidlike in character. Two principal types of theoretical methods have been
The principal experimental methods used to investigaténtroduced to investigate the diffusion of an adatom. The first
surface diffusion are the field ion microscopehe field method consists in describing the motion of the adatom from
emission currentFEM),*~8 laser induced desorptichscan- ~ a quantum mechanical point of view including the coupling
ning tunneling microscopy and laser optical diffraction with a thermal bath, either by a perturbation analysis or by
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renormalization. The coupling with the substrate phonongribution. To include these coherence effects, we generalize
was introduced by Kitaharet al!® to study the migration of the multiple-band model introduced by Efrineaal 1*° us-
an adatom using a one-band model. A multiple-band theorjng the Wigner distribution formalisif—3" In their works,
was developed by Efrimat al1**°to investigate the role of Efrima and Metiu have neglected the influence of the coher-
the phonons in the thermally activated regime, i.e., disreences. Indeed, they focused on the thermally activated re-
garding the low temperature regime. The influence of bottgime which requires one to take into account the transfers of
phonons and electron—hole pair excitations was discussed population, only. However, the Wigner formalism is a pow-
Wahnstromt®” using an approach based on the Fokker—erful method which allows the simultaneous description of
Planck equation and on the friction theory. In connectionthe dynamics of both coherences and populations.
with the works of Gomer, the coverage dependence of the The present paper is organized as follows. In Sec. Il we
diffusion constant was interpreted in terms of coherent bandirst introduce the Hamiltonian of the whole system
motion limited by lateral interaction’$. The anomalous iso- ‘‘adatom+substrate” and describe the multiple-band model
tope dependence of the diffusion constant was studied withiin terms of the Wannier states of the adatom. Then, the
the small polaron formalisri?. A two-band generalization of Wigner function is defined and the quantum kinetic equation
the Hubbard model, including the small polaron theory, wads established using the Zwanzig projector technique. Solv-
thus proposed to analyze the influence of both phonons arifig this equation, we finally introduce the self-diffusion con-
lateral interactiong® stant of the adatom. In Sec. Ill we applied our formalism to
The second type of method describes the diffusion prothe system H/C00). In Sec. IIl A we first present the mod-
cess as a chemical reaction. These methods are based oflig of the motion of the adatom using a one-dimensional
quantum version of the classical rate the6F$T)?*">°or on  approximation. Then, the surface phonons are characterized
a full quantum mechanical approach based on the flux—fluksing a slab calculation method. In Secs. IlIC and IlID we
correlation functiort’ Due to the numerically demanding na- Present our results concerning the dephasing process and the
ture of these techniques, most of them were performed agemperature dependence of the diffusion constant, respec-
suming a rigid surface. However, from a physical point oftively. Finally, these results are interpreted and discussed in
view, the diffusion results from a complicated interaction Sec. IV.
involving the surface dynamics. Therefore, the influence of
the motion of the surface was investigated using a modified
TST method®~%° and more recently, a transition state wave|| THEORETICAL PART
packet approacft The previous methods were applied to the
system H/C(L00) for which a semiempirical potential en-
ergy is available to describe the interaction between the hy-  We consider the quantum dynamics of a single hydrogen
drogen and the metallic surface. Note that, similar analysigitom adsorbed on tH&00) surface of a metallic substrate. In
were performed for other systems. For instance, the diffusiol general way, this dynamics is governed by the Hamiltonian
of H on Ni(100 was studied by Mattssoet al33*The au-  of the whole system ‘‘adatorsubstrate’” which can be ex-
thors have determined the potential-energy surface for thipressed as
system and have analyzed the influence of the surface He Mot HotV o)
phonons using a path centroid method. However, even if ATTIST YAS
they represent powerful techniques allowing exact quantumvhereH , denotes the Hamiltonian of the “free” adatom in
calculations, these second types of methods are still limitethe gas phase, i.e., the kinetic Hamiltonian, &hglcharac-
to a system which exhibits a reasonable number of degrees tdrizes the Hamiltonian of the substrate. The third contribu-
freedom. In addition, they are inappropriate to describe th¢ion, Vg, stands for the potential interaction between the
low temperature regime where the delocalization of the adaadatom and the surface. This coupling Hamiltonian depends
tom may play an important role. on the degrees of freedom of the whole system including the
In this paper, the self-diffusion of hydrogen on copper ispositionx of the adatom, the instantaneous positién$ of
investigated using a quantum kinetic equation apprdach. the substrate atonfsurface phononsand the electronic de-
Such a method allows us to characterize the diffusion over grees of freedom of the surface. In this paper, we focus our
wide range of temperature, including the transition from theattention on the influence of surface phonons and neglect the
thermally activated regime to the low temperature regimecoupling between the adatom and the electronic states of the
We describe the motion of the adatom with a multiple-bandsurface. Therefore, the surface dynamics correspond only to
model, and the diffusion results from the dynamical couplinga set of small displacements;} around the equilibrium po-
with the surface phonons. At low temperature, quantum efsitions{R;} of the substrate atoms. As a result, we can ex-
fects lead to the delocalization of the adatom and to the ocpand the potentiaV¥ ,sin a Taylor series with respect to these
currence of coherences between quantum states localized @igplacements, as
different sites. Even if these effects are extremely weak, due 0
to the small amplitude of the tunneling, we shall show that Vas(X{ri}) =Vad X {Ri}) + AHag(x.{ui}), 2
they are not negligible for a temperature lower than a crosswhere VXS is the contribution of the potential interaction
over temperature. As a result, dephasing induced by surfacghich is evaluated for the substrate equilibrium. The depen-
phonons contributes significantly to the diffusion coefficientdence of the potential with respect to the surface dynamics is
and induces a competition with the thermally activated conthus contained il\H 55. This procedure allows us to renor-

A. Model and Hamiltonians
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malize the Hamiltonian of the free adatom and to express thequation. This equation is based on a real space analysis of
total Hamiltonian Eg. (1)] as the sum of three contributions, the motion of the adatom. Therefore, the choice of the local

as basis seams to be more relevant. However, the tunneling pro-
~ cess induces a mixing of the local states leading to the band
H=Ha+tHst AHas(x,{u}), 3 character of the true eigenstates. To take into account this

WhereHA=HA+Vgs. From Eq.(3), we define the system of mixinlg 1gmd tq work in the.real space, we fpllow Efrima
interest as the adatom dressed by the static field created 1§ @~ and introduce a third basis which mixes the local
the substrate. The purpose of this work is thus to study th@asis and the extended Bloch basis. This new basis is formed
quantum dynamics of this system which is naturally de-Py Wannier states which are written as

scribed by the renormalized Hamiltoni&ty . However, the 1 .

adatom is not isolated and interacts with its surrounding | dxe)=—= > | o€, 5
which is defined by the surface dynamics. Consequently, the N

substrate acts as a thermal bath which allows the adatom tghere x=x, is a discrete index introduced to simplify the
exchange energy and to relax. The dynamical coupling benotation. Finally, the Hamiltonian of the whole system can
tween the adatom and the thermal bath is described by thee expressed in the Wannier representation, as

last contribution of Eq(3), namelyAH 55, which is assumed

to remain weak. _ H=2 2 (o) Hacxx (ool +Hst 2 2 (o)
The first step to study the quantum dynamics of the ada- T xx! oo’ xx!
tom consists in characterizing its quantum states. The two- X AH o (XX )yt | (6)
oo’ X' o'

dimensional periodicity of the system allows us to seek these

guantum states as Bloch states. However, the structure @there AH, . (xX")=(¢ys|AHag ¢y ,) IS an operator
these states depends strongly on the nature of the static ihich acts in the space of the states of the thermal bath,
teraction determined by the strength of the substrate corrwenly. The diagonal elements of this Hamiltonian characterize
gation. Indeed, for a sufficiently strong corrugation, the adathe fluctuations of the energy of the adatom adsorbed in a
tom is trapped in an adsorption site leading to a localsite, fluctuations due to the coupling with the thermal bath.
behavior of its quantum states. By contrast, a weak corrugaBy contrast, the nondiagonal elements represent the influ-
tion allows the adatom to behave as a nearly free particle an@nce of the surface dynamics on the tunneling mechanism.
a plane wave description appears to be more accurate. In trfss we shall see, these contributions induce two different
work, we are concerned with the first situation in which theprocesses which perturb the dynamics of the adatom in a
strong corrugation leads to a localization of the adatom. Thélifferent way.

adsorption sites form a two-dimensional lattice Mfsites
located at the position§x}, |=1,...N. Consequently, we
can take advantage of this local behavior to seek the Bloc
states using an empirical tight-binding method. To do so, we The characterization of diffusion processes requires the
first solve the renormalized Hamiltoniaf, reducing the knowledge of the space and time evolution of the distribution
system to a single siteand neglecting the presence of the function g(x,t). This function represents the probability of
other sites. This procedure allows us to define a set of locafinding the adatom at positior and at timet. From this
ized orthogonal statef ¢|s)}, wheres=0,...n corresponds distribution, we can compute, in principle, the self-diffusion
to the state number andto the site. Due to the tunneling constant which is related to the long time limit of the mean
mechanism, the adatom can make transitions between stateduare displacement of the adatom. Another way to do that is
which are located at different sites. As a result, the trud© Use the phenomenological Fick's Bwwhich describes

eigenstates dfl , can be expressed as a combination of Iocalthe self-diffusion and which is given by

E&. Description of diffusion processes

states centered at the adsorption sites, as d
19 =—DVZg(x1), @
1 A
_ = —ikx
| bko) = \/N% | @1s)Csake ™, 4) \whereD is the self-diffusion coefficient. By Fourier trans-

form Eq.(7), it is straightforward to show that the dispersion

where| ) denotes the Bloch states with two-dimensionalrelation associated to the hydrodynamic modes which corre-
wave vectok and with a band index. The coefficient®s,x  spond to self-diffusion is expressed as

can easily be computed since they represent the eigenstates o
of the space Fourier transform bf, within the local basis @q=~1D0% )
representation. The corresponding eigenenergies are the efkerefore, the self-diffusion coefficient can be characterized
ergy band<€,,, . from the knowledge of the behavior of the long wavelength
At this step, the knowledge of the local basis allows usdisturbance of the distribution function.

to describe the motion of the adatom under the influence of In our model Hamiltonian, the adatom is essentially lo-
the renormalized Hamiltonian. We can study the quantuntalized around an adsorption site and can realize transitions
dynamics of the adatom either in the local basis or in the€rom site to site either by tunneling or by coupling with the
extended Bloch basis. In the following, we shall study thethermal bath. Consequently, the continuous nature of the mo-
diffusive motion of the adatom using a quantum kinetiction can be approximated by a discrete one using the Wan-
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nier representation. We thus introduce the probability p=p,ps, (12)

0.,(x,t) of finding the adatom in a band and in a state ] .
located around the site. Moreover, due to the dynamical Wherepa andpsdenote the density matrix of the adatom and

interaction with the substrate degrees of freedom, the trugf the surface, respectively. The thermal bath is supposed to
eigenstates of the adatom are not well defined. As a resulP€ in thermal equilibrium at temperatuiieand the density

we must realize a statistical average over the states of tH&alrX ps corresponds to the Boltzmann distribution. We can
adatom using the density matrix formalism. Finally, we de-therefore split the total trace into partial traces and express

fine the distribution function as the B variables as
g(,(X,t)=Tr[e”‘t|¢x,,><¢>x,,|p] Ba(xvzt):TrA[pATrS[pSeiLt:”¢xa><¢;0'|]1 (13)
=B, (x,X,1), (9) where TR and Tk stand for a partial trace over the degrees

of freedom of the adatom and of the substrate, respectively.
To solve the dynamics of thB variables, we use the
an%rojec:tor technique introduced by ZwanzfjThe projector
method has demonstrated its usefulness in eliminating irrel-
B,(x,X,t)=Tr[ e""| . ) b5 | 0] (10)  evant information from a system and extracting only the in-
formation that is desired. In our situation, the irrelevant in-

2)r?ergle{ar]r]ceerilevt\\;\?gér:tlﬁev\?vg?bhl?sag?;(v’vtc)) \(/:\?;nr?]gfgzes the formation appears as the dynamics of the surface degrees of
9 tates) freedom since we are interested in the quantum dynamics of

and|¢?x(,> whgn the state of the adatqm IS written as a IInearthe adatom, only. From Ed13) the dynamics of the sub-
superimposition of such a states. This measure of the cohe

L . . Ltrate is naturally eliminated due to the partial trace dar-
ence, Wh'Ch Is performed at tlmuadepends_ on Fhe dynamical formed over the states of the substrate. Therefore, following
evolution of the whole system and on its history from the

AR B o ) Zwanzig's method and performing a second order perturba-
!Q't:::;ggjetg_tgé Equ;e;ﬂ:} g;gn?g”bu“in ftngtlzgg (rX":rze tion theory with respect to the couplingH s, it is straight-

! L lagon: E(x.x.t). How ver, forward to show that th® variables satisfy the equation of
characterization of the diagonal elements of @®variables

is insufficient to properly describe the diffusive motion of the motion

wherep andL denote the initial density matrix and the Li-
ouvillian associated to the whole system, respectively,
where the variabl® ,(x,x,t) is written as

adatom even if non diagonal elements do not appear explic- ¢ it t iLa—n)
itly in the definition of the distribution function. Indeed, di- a—tBU(x,x,t)=|(e (L)sl bxo){ 5ol ) — JOdT<e

agonal and non diagonal elements mix in a complicated man- .

ner under the influence of the total Hamiltonian. X(ALAE AL a9 o o Dl),  (19)

Consequently, we have to study simultaneously the dynam-
ics of these two kinds of variables. One way to achieve suc
a procedure is to introduce the Wigner distribufibri’
which is defined as

here(---)5 stands for an average over the surface degrees
of freedom, i.e., Tg - --ps]. In Eq.(14), L, is the Liouvillian
associated to the free Hamiltonian, i.e., the Hamiltonian of
the whole system when the coupling is equal to zero, and
AL g is the Liouvillian operator which corresponds to
AH,s. The partial trace over the substrate degrees of free-

. . . dom leads to a redefinition &f , to incorporate the averaged
The Wigner distribution is the central objet of our study value of the coupling Hami?tonian. IE)lowever to kegp a

which allows us to describe diffusion processes. It character-. . '
) . . sdmple notation, we do not change the expression of the pre-
izes the influence of both coherences and populations an

yields the required distribution functiog, (x,t) simply by \dn:::eHamlltonlans and proceed to the following correspon-
performing the sum ovek in Eq. (11). Moreover, one of the

advantages of the Wigner function is that it presents a formal HA‘}HA+<AHAS>81

resemblance to the one-particle distribution introduced in (15)
classical statistical mechanics. In the following, we thus de- AHas—AHAs—(AHag)s.

rive a quantum kinetic equation to define the time evolutionAft laebrai oulati the devel {of E
of this distribution and use the well-known theory from non- er some algebraic maniputations, the development ot £q.

equilibrium statistical mechanics to obtain a microscopic ex{;‘l) allowslus o Ferfokr_m ‘? Fourletr_ tra?sfc;[]m \&/l\?'d 0 O(;’_t?'f‘
pression of the diffusion constant. e general quantum kinetic equation for the Wigner distri-

bution, as

f (%K, t)=> B (x+r/2x—r/2t)e 'k, (11
r

C. Quantum kinetic equation EfU(X,k,t)“’ %2 H o (0X)e 0 (f (x+xX"12k, 1) —f (X
X!

To build a quantum kinetic equation for the Wigner dis-

tribution, we first consider the time evolution of tBevari- —X'12K,1))
ables. Then, performing a Fourier transform as in @q,), o
we get the required kinetic equation. . t _— .
Let us assume that at the initial tinie=0, there is no =-2 JArIxkoxk o iz k,t=7), (16

.. . oxk
statistical correlation between the adatom and the thermal X

bath. As a result, the initial density matrix can be written aswhere the memory kernell(x,k,a,x_,k_,E, T) IS written as
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J(x,K, 0, XK, 0, 7) we use the continuum approximation to develop the left-

R hand side of Eq(16).%°
. i N ei(k_T—kr) As a result, the quantum kinetic equation is written as

N T < o' X"

X{AH ;5 (X+T12X" 00 AH ./ (X", X+ 1/2,7))g dJ

Efo(x,k,t)JrkaVf,,(x,k,t)
XU, (X X DU g (X—TI12X=T12,7) 8By g
v ! " 1 5 T
—(AHG(X+T12X" 0)AH ;o(X—=1/2X",7))s =+ sz W o oG K E) =W, o o (XK 1)
X UL (X X+ H2,7)U (X X=TT2,7) 8 o S gt C.C. x
r, _
17) + 2 (Foxk=f,00kb), (18)
k

In Eq. (17), U, (X,Xx',7) is the matrix element of the evolu-
tion operator of the adatom, i.e., when the coupling Hami
tonian is equal to zero. It characterizes the free propagatio
of the adatom in a band, between two states located around
the sitesx andx’. The left-hand side of Eq16) character- 5 .
izes the coherent motion of the adatom in the banahich WE,Y—m,x:—zRef dr(AH,(XX,0AH ,5(X,X,7))s
involves tunneling mechanism, only. By contrast, the right- h 0

hand side of Eq(16) represents the influence of the thermal
bath on the dynamics of the adatom. This contribution is
nonlocal in space and includes all the history of the coupling
between the adatom and the thermal bath. Note that to obtain > "
Eqg. (16) we use the rotating wave approximatidRWA) in =2 _2Ref dr(AH5,(X,X,00AH ,7(Xx,X,7))g
order to neglect the dynamical coupling between the coher- xa h 0

ences involving Wannier states associated to different bands. X UL (7)Ua(7)

Such an assumption is justified by the large differences in the Ac Act T

energy of the different bands as we shall see later for the

system H/Cu. _ The left-hand side of Eqi18) corresponds to the free force
Due to the nonlocality, E¢16) cannot be solved exactly pgqjt;mann equation which describes the adatom as an exci-
and only the. use of r.elevant apprommaﬂoqs W!|| allow us t0¢4ti0n moving freely in the bane-. The right-hand side of
reach the microscopic expression gf the diffusion constant. Eq. (18), which represents the development of the memory
The memory kernel(x,k,o,x,k,0,7) [EQ. (17)] in-  kernel[Eq. (17)], exhibits two contributions. The first one
volves the correlation functions of the coupling Hamiltonian appears as a Pauli master equation and characterizes incoher-
AHas. The characteristic time of this kernel is the correla-ent transitions between Wannier states induced by the cou-
tion time 7, of the heat bath and is about 79-10"*?s for  pling with the thermal bath. It has been shown by Efrima
the substrate phonons. We thus assume that this time scaledgal1*!® that the rate for such a transitions, namely
small compare to the time evolution of the Wigner distribu—wzﬁmx, describes different kinds of processes and can be
tion. Indeed, since the Wigner distribution represents the copritten as
herence between states which lie in a given band, its charac-
teristic time is related to the amplitude of the tunneling
mechanism. It is well known that this amplitude is very weak WE,x:a,x:Wb_xAU <t W%_),ﬁx,?- (20
and ranges betweevi,=10 2% andV,=10 °eV when the '
adatom is in its ground state. As a result, the assumption
VX 1.<# is fully valid and allows us to invoke two ap- In Eq. (20), W- characterizes a lateral transition which in-
proximations in order to simplify Eqg16) and (17). First,  volves two different sites anw/" stands for a vertical tran-
we use the Markovian limit of the kinetic equation and sec-sition which takes place between two different bands but in
ond, we neglect the nondiagonal element of the evolutiorthe same site. In each case, the rates are related themselves
operatotU ;(7). The last assumption means that over a timeby the well-known detailed balance equation. Note that a
scale of about, the adatom does not have enough time tolateral transition can occur either in the same band or be-
make a transition to a neighboring site. Moreover, we astween two different bands. The second contribution of the
sume that different types of interaction between the adatomght-hand site of Eq(18) describes the dephasing mecha-
and the thermal bath are uncorrelated. Consequently, the canism responsible for the destruction of the coherence of the
relation function of two different matrix elements of the cou- nondiagonal elements of tH variables.
pling Hamiltonian vanishes and only the auto correlation  Finally, reducing our analysis to transitions between
functions are not equal to zero. Then, since we are interestattarest neighbor sites, the quantum kinetic equation is given
by the long wavelength behavior of the distribution function, by

|_wherevk(,= VE, is the velocity of the adatom in the band
and where

X UX,,( TUpzA7),
(19
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of high symmetry. We thus focus our attention on the diffu-

o1 Fo(X KD+ Vi V(XK 1) sion along one such direction, denotedxyand seek a so-
lution as
r, — .
:+WZ (fo(x. k1) = f(x.k,1)) [h(x,t))=|h(q,t))e' P «a’, (25)
k
whereq is the wave vector component parallel to theli-
E f(x, K)-W.__f (x.Kt) rection. Using EQq.(23) and substituting Eq(25) into Eq.
Weo oot (21), the quantum kinetic equation can be formally expressed
_ as
+alWE | V2 (Xk,t), (21)

R+iqu+g®Wh)|h(g))=iwg/h(q)), 26

whereWs | =Wy, . ,.andW, ,=2W=  +WY  and (RFiqu,u+ g Whn(@) =iwgh(a) (2
where a denotes the lattice parameter. whereu, is a unit vector parallel to thedirection and where

¥ andW" are the operators associated to the band velocity of
the adatom and to the rate for the lateral transitions, respec-
D. Self-diffusion coefficient tively. In Eq.(26), R stands for the relaxation operator which
accounts for the dephasing mechanism and for the incoherent
transitions characterized by the rak¢ The explicit expres-
sion of these operators is easily defined comparing(Ed.
and Eq.(26), as

The quantum kinetic equation is formally equivalent to
the linearized Lorentz—Boltzmann equation which describes
diffusion processes in classical fllidResiboié® has intro-
duced a method to obtain a microscopic expression of th8
self-diffusion coefficient from this kinetic equation. There-
fore, we use the same procedure which consists in doing the (ko|Rlko)=
Fourier Transform of the quantum kinetic equation and in
performing a perturbative theory to reach the dispersion re- 1 5
lation of the hydrodynamic modd¢€q. (8)]. These modes N e%ertWo5),
correspond to slowly varying disturbances of the Wigner dis-
tribution, in space and time, around its equilibrium value. o
From Eq.(21), it is easy to show that this equilibrium cor- (ka|WH ko) = N
responds to an homogeneous distribution in real space and in
reciprocal space. The equilibrium distribution depends only N -
on the energy of the bands and is expressed as {kor¥lk) =Vordordia

1—‘0'_‘— 2 \7VO'~>0" ) 50';8kk_

WS S, 27

1 e Eo/kT Consequently, from Eg26), the kinetic problem is formu-
fiqzﬁm, (22) lated in terms of an eigenvalue problem for the relaxation

operatorR. The equilibrium distribution, which corresponds
whereE,, is the energy of the band evaluated at the center to a spatially homogeneous and time-independent distribu-
of the Brillouin zone. Note that® does not depend on the tion, is the eigenvectofh(®)=1 of the relaxation operator
wave vectork since we have assumed that the tunnelingassociated to the eigenvalug®=0. Note that using the
amplitude is sufficiently small to neglect the dispersion ofdefinition of the scalar product Edq24), the eigenvector
the energy bands. Therefore, we seek a solution of the kinetih(?)) is normalized. For long-wavelength disturbance, the
equation as wave vectorq is thus assumed to be a small parameter and
the perturbed eigenvalues of the relaxation operator can be

fo(xk ) =1The(x kD), (23 determined using a perturbative theory. Therefore, following
where h,(x,k,t) characterizes the disturbance around theResibois}”*®we seek solutions of E¢26) as
equilibrium. In order to use the method described by Resi- 0 (1) (2) 2
bois, it is convenient to introduce an abstract linear vector ~ “a~ ¢ qra=qite,
space notation by considering the distributiop(x,k,t) as |h(q)>=|h(°>)+|h(1)>q+|h<2)>q2+---. (28)

the component of the vectdh(x,t)) in the representation
{|o,k)}. The scalar product in this abstract vector space iSubstituting Eq.(28) into Eq. (26), it is straightforward to
defined with respect to the transformation E2Q), as show thatw®) is equal to zero and that the first correction of
the eigenfrequency is expressed as
! _ eg*

(h(x,t)|h (x,t))—;:, fehx(x.k,Dh,(xkt). (29 2 (OO

Since the quantum kinetic equatipqg. (21)] is linear, —i(h |uXV(R—Iw(O) 1 v|h<°>) (29)
the dispersion relation of the hydrodynamic modes can be
defined considering the behavior of one Fourier componens a result, the microscopic expression of the diffusion co-
of the distribution, only. In addition, we assume that theefficient is determined comparing® [Eq. (29)] and the
diffusion of the adatom is “isotropic” on th€100) surface, dispersion relation of the hydrodynamic modes given by Eq.
i.e., the diffusion coefficient is the same along the directiong8). The resulting coefficient is expressed as
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o~ found in Refs. 28 and 31. The substrate is supposed to be
D= 2_ faa™W, - unreconstructed and th&00 face exhibits a square unit cell
77 with a lattice parametes=2.5327 A.

1 e The minimization of the potential energy leads to an
- 0 -1 —
+ Nx(rE; % Fovi, (kx| R kv, (30 equilibrium configuration where the adatom is located in a
o hollow site, i.e., at the center of the unit cell. The diffusion
whereN, is the number of sites along thedirection. valley belongs to th€110) direction and the height of the

The self-diffusion coefficient exhibits two contributions. Potential barrier between neighboring unit cells is equal to
The first contribution, which is proportional to the rate of 0.-51 eV. To investigate the diffusive motion of the adatom

lateral transitions, is the incoherent diffusion constant de@long this direction, we reduce the system to a one-
fined by Efrimaet al1**°1t describes processes in the coursedimensional one. Therefore, the renormalized Hamiltonian
of which the surface dynamics induce fluctuations of the tunincludes the kinetic Hamiltonian and the potential energy
neling matrix elements between two Wannier states. As &Xperienced by the hydrogen atom along the diffusion valley.
result, the adatom, initially localized in a Wannier state, isD(?”O“”_g by x the (110 direction, the potential energy
allowed to make a transition to another state by creating o¥as(X) is thus obtained performing a minimization of the
annihilating surface phonons. If the transition corresponds tdull potential with respect to the two orthogonal degrees of
an “in band process,” i.e., if the states belong to the samdreedomy and 2%
band, the process is clearly identified as phonon mediated TO characterize the local basis, we reduce the potential
tunneling. By contrast, if the transition involves different t0 @ single well problem and use the FBR—-DVR method
bands, then the process corresponds to phonon induced traf@sed on a Gauss—Hermite quadrafdia/e thus obtain the
sitions. eigenergie§Eg} of the adsorbed atom and the corresponding
The second contribution occurring in EQO) is the co-  localized wave functiongeis(x)}. These eigenfunctions are
herent part of the diffusion constant and characterizes ho#en used to evaluate the matrix elements of the potential
the dephasing limits the band motion of the adatom. Forbetween states located in neighboring sites. An accurate cal-
mally, if the adatom moves in a coherent manner, its eigenculation of these matrix elements requires the accurate de-
state is described by a superimposition of localized Wanniepcription of the tails of the localized wave functions, i.e., the
states. The phases between each component of this state ¥pdue of the wave functions in the region between two neigh-
related to each other when the time evolution is described b§oring sites. However, the FBR-DVR method does not al-
the Hamiltonian of the adatom only. However, during this/OW Us to obtain such accuracy. Indeed, a localized wave
time evolution, the coupling with the thermal bath inducesfunction is expanded in terms of Hermite polynomials. Since
random fluctuations of each phase which destroys the cohetd® convergence of the calculations requires the use of high
ence of the state. As a result, the nature of the motion of th@rder polynomials, the tail of the wave function exhibits os-
adatom evolves from a coherent one to an incoherent onéillations whose the shape depends on the number of DVR
Clearly, the coherent part of the diffusion constant, is related0ints. These oscillations, which are extremely small, do not
to the competition between the tunneling mechanism, whichnfluence the calculation performed to evaluate matrix ele-
tends to preserve the coherence, and the dephasing constdRents which involve wave functions localized in the same
which characterizes the damping process. Note thatdy.  Site. By contrast, they have a dramatic influence on the cal-
does not exhibit an explicit dependence with respect to théulation of matrix elements which mix wave functions lo-
tunneling matrix elements. However, the band velogity, cated at different sites. To solve this problem, we use a semi-

related to the gradient of the energy band, depends on tHdassical approach to build the localized wave functions from
tunneling amplitude. the knowledge of the eigenenergies. This method, which is

Note that the name “coherent diffusion coefficient” Known as the uniform approximation, is described in detail

used to describe this second contribution of the diffusiori" Ref. 42. The idea is that the qualitative shape of a local-
constant is introduced to distinguish this contribution fromized wave function is dictated by the disposition of its clas-
the first contribution. However, dephasing limited band mo-Sical turning points. For the single well problem, a localized

tion leads to the destruction of the coherence and induces, dfave function describes a bound motion between two turn-
course, an incoherent motion. ing points. It exhibits oscillations in the classical region, i.e.,

between the two turning points, and dies away outside. As a
result, this wave function is expressible in terms of the cor-

responding wave function of the harmonic oscillator. The

wave functiongs(x) of the sth state localized in th&h site

is thus written as

I1l. APPLICATION TO SELF-DIFFUSION OF
HYDROGEN ON CU(100)
A. Potential interaction and quantum states of the
adatom 2s+1—&2(x) - 31
X)=\/——— X)),

The modeling of the system H/CL00) is performed us- e1s(x) Ks(X) S(6)
ing the interaction potential introduced by Wonchatal 28
This potential consists of a sum of pairwise interactions bewhere¥ g is thesth wave function of the harmonic oscillator

tween the H atom and each copper atom. Each interactioand whereKy(x) = \/2m(ES—VAUS(x)/ﬁ. The function&(x)
has the form of a Morse potential and the parameters can lie defined by the transcendental equation
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TABLE I. Energies of the seven localized bound states and tunneling am- 0.25 . ; . ; . ;
plitude between similar states lying in neighboring sites.
Level E (eV) V; (eV) 02 i
0 0.0538 5.04@-14)
1 0.1547 -1.340-11)
2 0.2432 1.376-09) 3 015 ]
3 0.3206 —7.316-08) 8
4 0.3874 2.237-06) 5
5 0.4439 —4.115-05) S 0.1 i ]
6 0.4896 4.796-04) Iy
e “voN
0.05 Lol 1
s
|
J ©e-gnd f “K(x)dx (32 0 M\
750(50 £9)dé t s(x)dx, 20 0
o (meV)

whereé,= y2s+1 and wherd denotes the classical turning

point located at the left-hand side of the minimum of theFIG. 1. Projection of the normalized density of states of the substrate
potential well phonons on th€100) copper surface. The full line characterizes the density

A h in Table I. the | | basi . of states associated to phonons polarized along the direction normal to the
S shown _II’] able 1, the local basis contams SeV(_ansurface. The dashed line is related to phonons polarized along the direction
bound states with an energy lower than the potential barrieparallel to the surface.

The ground state corresponds to an energy equal to 0.053 eV

and the harmonic frequency is about 100.9 meV. The second

column of Table | contains the tunneling matrix elements  We show on Fig. 1 the projection of the density of states
between localized states in neighboring unit cells which hav@f the substrate phonons on th&00 copper surface. The
the same energy. The extreme|y small amp”tude of the tunf.U” line characterizes the denSity of states associated to
neling leads to a dispersion of the five lowest energy bandghonons polarized along the direction normal to the surface
less than 0.01 meV. These results show that the use of thehereas the dashed line is related to phonons polarized along
Markovian limit to reach the final expression of the kinetic the direction parallel to the surface. The phonon spectrum
equation is a good approximation. However, the dispersiofianges between 0 and 29.2 meV. The parallel density of
of the most excited band, equal to 1.92 meV, leads to &tates exhibits two peaks corresponding to surface modes
propagation time of the adatom abotg~0.1ps. We thus and which are located at 10.3 meV and 24.4 meV, respec-
expect that the most excited band will contribute to the dif-tively. The frequencies of the surface modes polarized along
fusion at h|gh temperature, 0n|y_ Since the correlation t|méhe normal to the surface are centered around 13 meV, i.e., at
of the phonons bath decreases with the temperature, we ak2.4 meV and 14.4 meV, respectively. Note that in the low

sume that the Markovian limit remains valid. frequency region, the density of states behaves‘aas pre-
dicted by the well-known Debye model for a three-
B. Surface dynamics dimensional solid®

_ . From these calculations, we are able to characterize the
To characterizes the surface phonons, we use an empifiieraction between the adatom and the substrate phonons.
cal force constant model |mp!y|ng adjustable parameters iRye thys analyze one-phonon and two-phonon processes per-
order to fit the previous experimental and .theoretlcal data. 'forming a second order expansion of the interaction potential
has been shown that the surface relaxation of the_mn) Vs [EQ. (2)] with respect to the displacements of the sub-
substrate remains small and represents a correction whiclja4e atoms. The coupling Hamiltonian between the adatom
ranges between 1% and 3% with respect to the bullnq the surface phonons can thus be defined and allows us to
structure™” As a result, the100) copper surface has essen- o\ 51ate the correlation functions required to calculate the

fcially a bulk like geometry. However_, for such an open ff_;\ce,rates and the dephasing constfBg. (19)]. These correla-
it has been mentionétithat substantial charge redistribution (o fnctions are expressed in terms of the correlation func-
in the surface region can change the surface force constafibns of the displacements of the substrate atoms and are

value even for a surface with a geometry like the bulk. computed from the knowledge of the phonon density of
The phonon dynamics are thus solved using a 50-layeg; ;o 45

slab calculatiod® We restrict the interaction to nearest

neighbors and introduce the nearest neighbor bulk force con- . :

stant pp=1.605eV A2, This value is in good agreement C. Energy corrections and dephasing constants

with previous calculations performed to solve tk&l0) As mentioned in the theoretical part, the averaged value
surface’® The surface force constants have been chosen enof the coupling HamiltoniamAH 5 over the thermal bath
pirically to reproduce the surface dynamics. Note that, a freelegrees of freedom leads to a correction of the renormalized
correction model, i.e., neglecting the change in the surfacélamiltonian of the adatorfEg. (15)]. We show in Fig. 2 the
force constants, leads to results in good agreement with motemperature dependence of the energy corrections of the
sophisticated calculatioffssince the error for the frequen- seven bound states. Note that only two-phonon processes
cies of the surface phonons is less than 1.5 meV. induce a nonvanishing correction to the energy levels. In a
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FIG. 3. Temperature dependence of the dephasing constant of each bound

FIG. 2. Temperature dependence of the averaged value of the couplingtate.
between the adatom and the surface phonons. Only the correction of the
bound states energies is shown.

ing mechanism. For example, @& 300 K, the contribution

| h L ith th of one-phonon processes represents about@ 3% of the
general way, the energy correction increases with the te"q?ghasing constant of the ground state.
perature and decreases as the state number increases. T

different states do not experience the same correction and o
this difference evolves with the temperature. Indeed, the shifp: 'ncoherent, coherent, and full self-diffusion
of the ground state is equal to 12.30 meVTat 100K and coefficient
increases up to 30.38 meV at=300K. By contrast, the In this section, we first present the results concerning the
correction to the most excited bound state increases frorhehavior of the incoherent rates. However, since the incoher-
8.26 meV to 20.32 meV in the same range of temperaturent part of the diffusion coefficien€q. (30)] is directly re-
leading to a dispersion of the energy shift which varies fromlated to the rates of interefEqgs. (19) and (20)], we focus
4.04 meV to 10.06 meV. Two-phonon processes induce aur attention on the values of this latter parameter. Then,
small correction of the tunneling matrix elements. At low from the knowledge of the dephasing constant and of the
temperature, i.eT=10K, this correction leads to a shift of rates for the incoherent hops, we characterize the coherent
the tunneling amplitude which is equal to 1.36% in thecontribution of the diffusion coefficient. Finally, the full co-
ground state and to 1.12% in the most excited state. As thefficient is presented.
temperature increases, the correction becomes more impor- In Fig. 4 we show the temperature dependence of the
tant but remains weak since it is lower than 15%Tat incoherent diffusion coefficienD; for one-phonon and for
=1000K. two-phonon processes, respectively. Clearly, as for the
The behavior of the dephasing constfiag. (19)] with dephasing mechanism, two-phonon processes represent the
respect to the temperature is shown on Fig. 3 for the differenlominant contribution of the incoherent rates, the one-
bound states. As for the correction of the energy, the dephaghonon contribution corresponding to a correction less than
ing constant decreases as the energy of the bound state i0:05%. The diffusion coefficierd; shows an activated tem-
creases. AT=100K, the dephasing constant of the groundperature dependence at high temperature, i.e., typically for
state is equal to 9.5 meV whereas the constant characterizirggeater than 100 K. This behavior allows us to fit the curve
the more excited state is equal to 4.3 meV. The dispersion afith an Arrhenuis law of the fornD;=Dye” *F¥T. The ac-
the value versus the energy of the bands is thus equal to 5t®ation energy is thus equal thE=0.49+0.01 eV and the
meV. This dispersion increases with the temperature angrefactor is given byD,~2.44x 10 % cné/s. As shown in
reaches, for example, a value equal to 58.1 meVTat Table Il, the incoherent diffusion constant is equal D¢
=300K. For this temperature, the dephasing constant of the=1.29x 10 **cn?/s at T=300K and reaches the vali,
ground state is equal to 0.10 eV. At low temperature, the=1.20x 10 °cn/s atT=1000K. Note that the rates asso-
dephasing constant shows a power law dependence of tlsgated to one-phonon and two-phonon processes behave
form I'ec T¢. Fitting the curve of the ground state leads to asimilarly versus the temperature since both follow an
value for the parameter equal toa~3.20=0.05. Since the Arrhenius-type law.
different constants exhibit a similar temperature dependence, At low temperature, typically fofT lower than 100 K,
they are characterized by the same power law. Note that onlghe behavior oD; exhibits a change and varies more slowly
two-phonon processes contribute significantly to the dephaswith the temperature. Clearly, the curve does not follow an

Downloaded 10 Aug 2003 to 128.135.132.83. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 113, No. 3, 15 July 2000 Self-diffusion of H on Cu(100) 1213

0 T T T _10 R T T T
\\
-10 - - — one-phonon part|
—— two—-phonon part 20 -
=20 -
-30 - =30 r
]
_ c
[m) 40 |+
£ —40
-50
50 |
-60
=70 - 1 —60 . | . | , | .
0 0.005 0.01 0.015 0.02
-80 1/T

L Il L 1 L Il L
0 0.005 0.01 0.015 0.02
1T FIG. 5. Temperature dependence of both the incoherent and the coherent
part of the diffusion coefficient. The full line corresponds to the full diffu-
FIG. 4. Temperature dependence of the incoherent part of the diﬂusioﬁion coefficient whereas the dotted line and the dashed line are related to the

coefficient. The full line corresponds to two-phonon contribution WhereasInCOherent and to the coherent contribution, respectively.

the dashed line is related to one-phonon contribution.

— . . 5. At high temperature, typically foF greater than 100 K,
Arrhenius-type law in this range of temperature. Moreover,DC increases with the temperature. Howevdy, does not

one-phonon and two-phonon processes do not exhibit thé

same temperature dependence. Therefore, a fit of the twsohOW an Arrhenius-type law and exhibits a slower tempera-

curves forT lower than 50 K shows a linear temperature f[ure dependence compared. As shown in Table 11D,

dependence for the one-phonon contribution and a powe,!? smaller thanD; by three orders of magnitude at

law dependence for the two-phonon contribution. In this lat-_ 1000K. This difference decreases as the temperature de-

. creases and two orders of magnitude separate the two con-
ter case, the parametercharacterizing the power law was tributions atT=300 K. The main difference betwedh. and
found to be equal tax~3.26*0.05. Note that the tempera- B ' en

ture at which the shape @); exhibits a change of behavior D; occurs at low temperature. Indeed, for a temperature

does not correspond to a particular value. We just identify!ower than 100 KD, exhibits a completely different behav-

_ ) ior. First, D, reaches a minimum value equal to 4.30
Il;sl.OOK as the temperature around which the change oc.;< 10,25(:“]2/8 for'T:88.50 K. ThenD, shows a change in
The variation of the coherent contribution of the diffu- 'S P€havior and increases as the temperature decreases. Con-
sion coefficientD. versus the temperature is shown on Fig_sequently,Dc becomes greater th@i in this temperature .
range. The low temperature behavior of the coherent contri-
butionD. is clearly related to the variation of the dephasing
TABLE Il. Temperature dependence of the incoherent and coherent contrieonstant. Indeed, when the temperature is lower than 50 K,
butions of the diffusion coefficient. the curveD,, versus the temperature can be fitted by a power
TK) D, (cnls) D, (cn?ls) Iavy. The pe_lrametetu was found to bea~ —3.22+0.05.
This value is close to the absolute value of the exponent
60 6.84—26) 9.93-25) which characterizes the low temperature behavior of the

128 égg:gg g;g:gg dephasing constant, i.ex~3.20+0.05 (see Sec. lll ¢, im-

120 5.28-23) 5.54—23) plying the relationD .o 1/T". N _

140 1.68—20) 1.03-20) The full self-diffusion coefficienD is the sum of both

160 1.72-18) 6.13-19 the coherent and incoherent mechanisms of diffugieq.

180 6.82-17) 1.49-17) (30)]. As a result, the relative contribution of these two terms
ggg 123:13 igi:ig will depend on the temperature of interégig. 5. There-

240 1.26-13) 8.44—15) fore, at high temperatur® is dominated by _the incoherent
260 7.41-13) 3.58—14) contribution and is related to a thermally activated processes.
280 3.14-12 1.22-13 The temperature dependence Dfis thus described by an
300 129-1) 3.52-13 Arrhenius law with the same parameters as those introduced
388 ;g:gg ii;jg to characterize the variations &f;. However, as the tem-
1000 1.20-05) 1.07-08) perature decreases, the relative influence of the coherent part

D. increases. Wheil is close to 100 K, the two contribu-
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tions D, and D; are nearly the same. Consequently, bothband motion. The coherent contribution of the diffusion co-
coherent and incoherent mechanisms contribute to the diffuefficient,D, is proportional to the ratio of the square of the
sion constant an® moves away from the incoherent curve velocity of the adatom in this band to the dephasing constant.
(Fig. 5. As the temperature decreases, the coherent contrAs shown on Fig. 5, as the temperature increases the dephas-
bution dominates the diffusion process and the coeffidient ing constant increases leading to the diminution Dnf.
reaches the coherent curve. From these results, it seems iHowever, when the temperature reaches 100 K, the popula-
teresting to introduce a characteristic temperature which alkion of the first excited band is sufficient so that coherent
lows us to separate the incoherent and the coherent regimeiffusion takes place in this band. Since the tunneling ampli-
for the diffusion coefficient. We thus define this crossovertude, and thus the velocity, increases with the energy of the
temperaturél™* as the temperature which corresponds to theband, the coherent diffusion in the first excited band is more
same value foD. andD;, i.e.,D¢(T*)=D;(T*). As shown important compared to diffusion in the ground state band. As
on Fig. 5, the crossover temperature is thus equal®o a result, the increase @, with the temperature character-

=125K. izes the transition between the motion in the ground band
and the motion in the first excited band. The temperature for
IV. DISCUSSION which such a mechanism occurs is related to the competition

The previous results clearly show that the diffusion between the Boltzmann factor and the tunneling in the first

mechanism results from a dynamical interaction between thg*cited state. The analysis of the numerical data shows that
adatom and the surface whose main contribution involved® temperature of interest is equal to 102 K. The same ex-
two-phonon processes. Furthermore, the temperature depgpf@nation can be used to interpret the behavior of the inco-
dence of both the incoherent and the coherent part of thBerent part of the diffusion constabx; around 100 K. In-
diffusion coefficient changes around 100 K. deed, the temperature dependenceDgf shows that the
The relative contribution of one-phonon versus two-incoherent coefficient related to the first excited band is
phonon processes is directly connected to the first derivativedual to the incoherent coefficient of the ground band at a
and to the second derivative of the adatom-surface potentialemperature equal to 104 K.
respectively. Consequently, the weight of each contribution At high temperature, the diffusion results from a ther-
depends on the matrix elements of these derivatives used fBally activated process in terms of phonon induced incoher-
express the dephasing constant and the incoherent rates. T¢t hops. The activation energy is different from the classical
dephasing constant associated with a particular state is dactivation barrier, i.e., the potential barrier between neigh-
fined in terms of the correlation functions of the coupling boring sites equal to 0.51 eV, and corresponds to the energy
Hamiltonian involving transitions between this state and allof the most excited state. Note that we did not include the
the other statefEq. (19)]. However, the coupling between Sstates lying above the corrugation. At very high temperature,
states located in different sites are extremely weak and th#ese states may participate in the motion of the adatom.
main contribution is thus due to matrix elements which con-Nevertheless, our results are in good agreement with previ-
nect states lying in the same site. As a result, two kinds opus calculations performed using quantum version of the rate
processes can take place in terms of phonon induced fluctuéheory. AtT=300K, the diffusion constant for a rigid sub-
tions of a given state and phonon induced transitions. Sincétrate was found to range between 3D °cn/s and
the phonon spectrum ranges between 0 and 30 meV, resB-01x 10 °cn?/s.*~%° Landerdaleet al** have reported a
nant transitions occur between the most excited states onialue equal to 6.9% 10" **cn¥/s using a classical harmonic
and take place at high temperature when the population g#scillator model. The correction induced by the motion of
these states becomes significant. Therefore, the main contihe surface was found to be extremely sifafi’ and corre-
bution of dephasing is due to the fluctuations of the diagonasponds to a factor lesser than 5 Bt300K. The wave
matrix elements of the coupling. When the adatom is locateghacket analysis performed by Zhaegal*! show a diffusion
close to its equilibrium position, only the matrix elements of constant equal to 8.6410 '°cn¥/s at the same temperature.
the second derivative of the potential are important leadinghs shown in Table II, our calculations yield a diffusion co-
to the negligible effect of the one-phonon processes. By corefficient equal to 1.32 10~ *cnm?/s atT=300K leading to a
trast, the incoherent diffusion coefficient is related to thedifference of less than one order of magnitude with respect to
correlation functions of the nondiagonal elements of the couthese previous calculations. However, these previous results
pling which involve states located in neighboring sites.were found using techniques which are fully different from
Therefore, both one-phonon and two-phonon processes atiee method we used and a direct comparison must be done
involved in the incoherent transitions. The fact that two-carefully.
phonon processes represent the main contribution results The main advantage of our technique is the ability to
from the competition between the matrix elements of the firstdescribe the motion of the adatom at low temperature where
and second derivative of the potential, respectively. both the coherent and incoherent mechanisms contribute sig-
For both the coherent and incoherent diffusion constantificantly to the diffusion. Our results show that a transition
the occurrence of a change in the temperature dependencedscurs from a thermally activated regime to an almost tem-
due to the competition between processes occurring in thperature “independent” regime at the crossover temperature
ground state and those which take place in the excited stateg* = 125 K. Below this crossover temperature, the diffusion
At low temperature, only the ground band is significantly constant follows the coherent contribution and increases as
filled and the motion of the adatom can be viewed as a onethe temperature goes to zero. This feature is easily under-
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standable since phonon induced dephasing depends on thkectron—hole pairs in metals provide an energy dissipation
population of surface phonons. Consequently, as the temmechanism in addition to the coupling to phonons. In a pre-
perature decreases, the population of phonons diminishagous work?!’ it has been shown that the influence of these
and the perturbation induced by the thermal bath disappeaescitations can be modeled in terms of a friction coefficient.
leading to a divergence of the diffusion coefficient at zeroThe typical value of this parameter was found to be about 1
temperature which was found to scaleTas® with «a~3.2.  or 3 meV. The friction coefficient can be associated to the
For surface diffusion, there is no experimental data whichdephasing constant. As a result, electron—hole pair excita-
reports this feature. However, the behavior of the diffusiontions may play an important role in a temperature range
coefficient at low temperature was extensively studied fowhere the dephasing constant due to phonon fluctuations is
hydrogen, muon and muonium diffusion in soffdln insu-  about 3 meV, i.e.T<50K.
lators, where the thermal bath is essentially composed of Consequently, all these processes would have to be in-
phonons, it as been shown, from a theoretical point of viewgcluded in our calculations to reach the final value of the full
that the diffusion coefficient diverges at low temperature andliffusion constant. Since some of them are temperature in-
scales ag ~*.“8%9 The value of the parameter was found dependent, as for the inhomogeneous disorder, the final ex-
to be 7 or 9. Nevertheless, this value depends strongly on thgression of the coherent part of the diffusion constant may
dimension of the system, on the strength of the interactionbecome independent of the temperature. Moreover, the other
and on the shape of the phonon density of states. In facsources of scattering contribute to the increase of the dephas-
experimental analysis in ionic insulatétsand compound ing constant leading to a change of the value of the crossover
semiconductord indicate thata is generally closer to 3 temperature.
rather than to 7 or 9. The first observation of a’ tempera- In addition, we have supposed that the quantum diffu-
ture dependence was reported in a van der Waals crystal sfon of the adatom could be described using a one-
solid nitrogen whose phonon spectrum is much closer to thdimensional model. Such an approximation is valid if we
Debye modef? assume an adiabatic decoupling between the different de-
Unfortunately, there are no experimental data publishedjrees of freedom of the adatom. Indeed, Baeal>* have
for the system H/C@00 to compare with our calculations. discussed the influence of the dimensionality on the thermal
However, Ho and co-workers have performed recent experirate related to the transition from a subsurface hydrogen
ments using the scanning tunneling microsc@pyM) tech-  atom to a surface site of a nickel crystal. The comparison
nique in order to determine the diffusion coefficient of hy- between the full three-dimension@D) calculations and the
drogen on C(.00).%® The authors have observed a transitionreduced two-dimensional2D) and one-dimensionai1D)
between a thermally activated regime and a temperature irgalculations is performed. The authors have shown that the
dependent regime and they report a crossover temperatuB® calculation exhibits the lowest thermal rate. At low tem-
close to 60 K. Moreover, it is well established that such aperature, the tunneling rate is nearly temperature indepen-
transition occurs for hydrogen on metals. Gomer and codent and the crossover temperature was shown to decrease as
workers have shown that the system H(Ref. 4 and H/Ni  the dimensionality of the calculations increases. Conse-
(Ref. 8 exhibit a transition for a temperature close to 150 Kquently, the authors have pointed out that the tunneling rate
and 100 K, respectively. In their experiments, the diffusionis very sensitive to a naive reduction of the dimensionality.
constant, below the transition temperature, appears to b®8uch an approximation fails, first, because of the variation of
strictly temperature independent. Note that, for the systenthe perpendicular zero-point motion along the reaction path
H/Ni(111), the experimental situation remains unclear sinceand second, because of the overestimation of the coherence
Zhu and co-worker$ found a thermally activated regime as between the two sites separated by the potential barrier.
low as 65 K and did not observe a temperature independeiowever, the authors have shown that the adiabatic approxi-
regime. They have observed a change in the diffusion conmation dramatically improves the 1D calculation. For hydro-
stant around 100 K corresponding to a transition betweegen diffusion on the copper surface, the main contribution of
two different thermally activated regimes. However, a theo-the rates for incoherent hops along tkelirection would
retical analysis performed by Mattssenhal® has confirmed involve states associated to thenotion. As a result, we thus
the existence of a transition for this system. expect a small change in the activation energy if the zero-
In our calculations, the crossover is introduced due tgoint energies related to tlyeandz coordinates are the same
phonon induced dephasing and leads to a smooth temperbeth at the center of the site and at the top of the potential
ture dependence of the diffusion constant. In real systemdarrier along the direction. Therefore, the incoherent diffu-
other phenomena can be responsible for the breaking of th@on constant for surface diffusion is related to the coefficient
coherent band motion such as disorder, lateral interaction& one dimension through a symmetry factor which account
and other kinds of bosonic excitations than phonons. Théor motions along equivalent high symmetry directions.
disorder can arise from lattice strain or surface deféobs ~ However, the dephasing constant associated to a given state
purities, vacancies, steps, @tcMoreover, realistic experi- may become more important for a full three-dimensional
ments are performed at nonzero coverage and lateral interaproblem. Indeed, the coupling with substrate phonons may
tions between adatoms have been shown to play a cruciaduce transitions between states located in the same site but
role to reduce the mean free path of the adat®mm. addi-  related to different coordinates. Consequently, in addition to
tion, on metal surfaces, the relative influence of phononshe previous processedslisorder, lateral interactions, efc.
versus electron—hole pair excitations is not clear. Thahe dimension may affect the coherent part of the diffusion
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constant and would lead to a change in the estimation of th&T. N. Truong and D. G. Truhlar, J. Chem. Phg8, 6611(1988.

crossover temperature.

ACKNOWLEDGMENT

283 E. Wonchoba and D. G. Truhlar, J. Chem. Pl98.9637(1993.
29Y. Sun and G. A. Voth, J. Chem. Phy&8, 7451(1993.

30K. Haug, G. Wahnstrom, and H. Metiu, J. Chem. Pt§%.2083(1990.
31D, H. Zhang, J. C. Light, and S. Y. Lee, J. Chem. PHykl, 5741(1999.

This research was Supported in part by Grant from theBZT' R. Mattsson, G. Wahnstrom, L. Bengtsson, and B. Hammer, Phys. Rev.

NFS-CHE9877086.

IHydrogen Effects in Catalysiedited by Z. Paal and P. G. Men¢bek-
ker, New York, 1988

2G. Ehrlich and K. Stolt, Annu. Rev. Phys. Che&1, 603 (1980.

3J. D. Doll and A. F. Voter, Annu. Rev. Phys. Che88, 413(1987).

“R. DiFoggio and R. Gomer, Phys. Rev.ZB, 3490(1982.

5R. Gomer, inSurface Mobilities on Solid Materialgdited by V. T. Binh
(Plenum, New York, 1983

6C. Dharmadhickari and R. Gomer, Surf. Stit3 223 (1984).

7S. C. Wang and R. Gomer, J. Chem. P83.4193(1985.

87. S. Lin and R. Gomer, Surf. S&225, 41 (199.

9S. M. George, iDiffusion at Interfacesedited by M. Grunze, H-J. Kreu-
zer, and J. J. WeimgSpringer, Berlin, 1988

109G, Binning, H. Fuchs, and E. Stoll, Surf. Si69, L295 (1986.

11X. D. Zhu, A. Lee, A. Wong, and U. Linke, Phys. Rev. Lef8, 1862
(1992.

12G. X. Cao, E. Nabighian, and X. D. Zhu, Phys. Rev. L8,.3696(1997.

18K, Kitahara, H. Metiu, J. Ross, and R. Silbey, J. Chem. Pbs.2871
(1976.

143, Efrima and H. Metiu, J. Chem. Phy89, 2286(1978.

153, Efrima and H. Metiu, Surf. Sc5, 721 (1978.

186G, Wahnstrom, Surf. Scil59, 311(1985; 164, 449 (1985.

17G. Wahnstrom, Chem. Phys. Leti63 401 (1989.

18K. B. Whaley, A. Nitzan, and R. B. Gerber, J. Chem. Ph§4, 5181
(1986.

19K. F. Freed, J. Chem. Phy82, 5264(1989; A. Auerbach, K. F. Freed,
and R. Gomeribid. 86, 2356(1987).

20p_ D. Reilly, R. A. Harris, and K. B. Whaley, J. Chem. Ph9s, 8599
(1991); 97, 6975(1992.

215, M. Valone, A. F. Voter, and J. D. Doll, Surf. Sdi55, 687 (1985.

223, M. Valone, A. F. Voter, and J. D. Doll, J. Chem. Ph§5, 7480(1986.

233, G. Lauderale and D. G. Truhlar, J. Am. Chem. Sd¥7, 4590(1985.

24]. G. Lauderale and D. G. Truhlar, Surf. Sbé4, 558 (1985.

2@, Wahnstrom, J. Chem. Phy&9, 6996(1988.

2], G. Lauderale and D. G. Truhlar, J. Chem. Pi84.1843(1986.

B 56, 2258(1997.

33T, R. Mattsson and G. Wahnstrom, Phys. Rev5@ 14944(1997).

34J. RammerQuantum Transport TheorfPerseus Books, Massachusetts,
1998.

35J. Rammer, Rev. Mod. Phy63, 781 (1991).

36E. Wigner, Phys. Rew0, 749(1932.

S7L. E. Reichl, in A Modern Course in Statistical Physjcedited by E.
Arnold (1980.

38R. Zwanzig, Lect. Theor. Phy8, 106 (1960.

39G. P. SrivastavaThe Physics of Phonongddam Hilger, New York,
1990.

“Op_ Resibois, J. Stat. Phy2. 21 (1970.

413, C. Light, R. M. Whitnell, T. J. Park, and S. E. Choi, “Supercomputer
algorithms for reactivity,” in Supercomputer Algorithms for Reactivity,
Dynamics and Kinetics of Small Moleculé§luwer Academics, Boston,
1989, p. 187.

42M. S. Child, Semiclassical Mechanics with Molecular Applicatidi@ar-
endon, Oxford, 1991

43K. P. Bohnen, T. Rodach, and K. M. Ho, Burcture of Surfaces-lII
edited by S. Y. Tong, M. A. Van Hove, X. Xie, and K. Takayanagi
(Springer, Berlin, 1991

44Y.Chen, S. Y. Tong, J-S. Kim, L. L. Kesmodel, T. Rodach, K. P. Bohnen,
and K. M. Ho, Phys. Rev. B4, 11394(1991).

4SW. Kress and F. W. de Wett&urface PhononéSpringer, Berlin, 1991

46p, zZeppenfelcet al. Phys. Rev. B38, 12329(1988.

47y, G. Storcak and N. V. Prokof'ev, Rev. Mod. Phy&), 929 (1998.

“8A. F. Andreev and |. M. Lifshitz, Sov. Phys. JET®, 1107 (1969.

“vu. Kagan and L. A. Maksimov, Sov. Phys. JEBB, 307 (1974.

0R. F. Kiefl, R. Kadono, J. H. Brewer, G. M. Luke, H. K. Yen, M. Celio,
and E. J. Ansaldo, Phys. Rev. Lef2, 792(1988.

51R. Kadono, R. F. Kiefl, E. J. Ansaldo, J. H. Brewer, M. Celio, S. R.
Kreitzman, and G. M. Luke, Phys. Rev. Le®4, 665(1990.

52y. G. Storcak, J. H. Bewer, and G. D. Morris, Phys. Lett.183 199
(1999.

531, J. Lauhon and W. Hgunpublished

54R. Baer, Y. Zeiri, and R. Kosloff, Phys. Rev. 8, R5287(1996.

Downloaded 10 Aug 2003 to 128.135.132.83. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



