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Highly accurate quantum-mechanical calculations az presented for highly excited vibrational 
states of HzO. The vibration Hamiltonian operator Hvib for a nonlinear triatomic molecule is 
given in Radau coordinates. A direct product basis is chosen, and the Hvib matrix is evalu- 
ated in the discrete variable representation (DVR) for the symmetrized Radau coordinates. 
Vibrational eigenstates are computed from the DVR Hvib via the successive diagonalization/ 
truncation technique. A comparison of the computed eigenvalues with those observed demon- 
strate the accuracy of our model. Highly excited vibrational states, up to 30 000 cm-’ above 
the zero-point energy, are reported for the potential energy surface (PES) given by Jensen [J. 
Mol. Phys., 133, 438 (1989)]. Using natural orbital expansions, the eigenfunctions of vibra- 
tional states are analyzed to understand the origins of the dynamical mixing of the vibra- 
tional modes. The local/normal mode transitions, Fermi resonances, Darling-Dennison inter- 
actions, and the mode separabilities are investigated. Statistical studies on the energy level 
spacings are presented for two different types of PES. 

I. INTRODUCTION 

The widespread availability of tunable laser sources 
with narrow linewidth (Av<O.OOl cm-‘) has facilitated 
the measurement of ultrahigh-resolution absorption spec- 
tra of a variety of molecules in a wide range of energy 
levels.lm3 Sensitive detection methods allow precise mea- 
surement of even highly excited vibrational states. Such 
experimental improvements make the efficient quantum 
calculation of highly excited molecular eigenfunctions and 
their energy levels very useful, particularly if the computed 
accuracies are comparable to the accuracy of the observed 
values, usually better than 0.1 cm-‘. Such calculations can 
be used to guide experimentalists to assign spectra, to ex- 
tract accurate and useful information about the potential 
energy surfaces, to evaluate effects of spectroscopic “anom- 
alies” due to interactions such as Fermi resonances and 
local mode degeneracies in high energy regions, and finally 
to study such concepts as “quantum manifestations of clas- 
sical chaos.” 

Needless to say, however, the problem of solving the 
Schrodinger equation for large amplitude vibration motion 
quickly becomes intractable as the size of a molecule in- 
creases. As the number of energy levels increases and the 
amplitudes of vibrational motions become large, a single 
set of orthogonal coordinates does not exist in which the 
internal motions are clearly uncoupled; the motion is no 
longer separable in any set of coordinates. Choosing the 
optimum coordinate system and the basis functions for 
each degree of motion becomes important in evaluating the 
accurate vibrational eigenstates over the full range of the 
coordinate space of interest. 

In the past spectroscopists have developed analytical 
representations of energy levels based on perturbation the- 
ory and power series expansions of the potential energy 

function about the equilibrium geometry.4 High order 
equations contain terms for vibrational mixings due to 
Fermi resonances and Darling-Dennison resonances. Such 
analytic modeling has provided the requisite qualitative 
information for assignment of molecular spectra, particu- 
larly for states which are not far from the equilibrium con- 
figuration. As molecular spectra of higher resolution over a 
wider range of energy become available, however, it be- 
comes important to have a means of accurate theoretical 
prediction of energy levels in an extended energy range, 
while retaining as much as possible simple physical pic- 
tures of the dynamics of a molecule in highly excited states. 

For quantum mechanical calculations of energy levels 
of small molecules, the variational approach is the most 
widely used. It has been successfully applied to systems 
such as LiCN,@ HCN,7>8 H3+,9-14 etc. to treat the highly 
excited (floppy) vibrational states which lie above the bar- 
rier to different configurational isomers. The numerical 
procedures adapted to carry out variational computations, 
however, have only recently become efficient enough to 
evaluate energy levels of highly excited vibrational states of 
extremely anharmonic molecular systems, such as H,O. In 
order to obtain the desired numerical accuracy (better 
than or comparable to the observed high resolution spec- 
tra), even more efficient and facile computational methods 
are desired. 

The development of the discrete variable representa- 
tion ‘*-‘* (DVR) has significantly enhanced the efficiency 
of numerical treatment of diverse quantum mechanical 
problems. Several of the most efficient and accurate com- 
putations of highly excited vibrational states of triatomic 
systems have been done incorporating the DVR in portions 
of computations. Because of the ease of evaluation of the 
vibration-rotation Hamiltonian, H,, in the DVR, a good 
basis for each internal coordinate can be chosen from a 
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wide class of available mathematical functions. The sparse 
nature of the multidimensional H,, matrix in the DVR 
also makes this numerical approach extremely efficient. 
Since in a DVR the coordinate matrix is diagonal, any 
analytical form of the potential energy surface can be used 
effectively. 

II. NUMERICAL METHODS 

For obvious reasons water is one of the most widely 
studied molecules, both theoretically and experimentally. 
High resolution spectra of water vapor have been measured 
for pure vibrational states with energy levels as high as 
-25 000 cm-’ (Refs. 19 and 20, and references therein). 
The observed states, however, do not include highly ex- 
cited bending vibrational states. In this paper we use the 
DVR approach to study the vibrational states of H,O to 
very high vibrational levels (to - 30 000 cm-’ above the 
zero-point energy). Accurate energy levels are evaluated, 
and their wave functions are analyzed to study the reso- 
nance interactions among different vibrational states. Two 
different potential energy surfaces (PES’s) are used for 
comparisons. 

In this section we will first define the symmetrized 
Radau coordinate system and the body-fixed axes which 
we use, We then define the vibrational Hamiltonian oper- 
ator, Hvib, of a nonlinear triatomic molecule of CZ, sym- 
metry. The basis functions are given in the DVR. Finally, 
we discuss the sequential diagonalization/truncation pro- 
cedure used to solve the three-dimensional vibration prob- 
lem. 

For highly excited vibrational states, extensive mixing 
of the zeroth-order vibrational modes (e.g., normal 
modes) is apparent. The energy spacings of bending states 
range widely depending on whether the bending energy is 
below or above the barrier to linearization. Overlaps of 
Fermi resonances and local mode degeneracies become 
ubiquitous as the density of states increases. The statistical 
analysis for the energy level spacings is used to look for the 
“quantum manifestation of classical chaos.” 

This article is organized as follows: In the following 
section numerical methods arz defined. A general form of 
the vibrational Hamiltonian, Hvib, for a nonlinear tzatomic 
molecule is derived in Radau coordinates. The Hvib of a 
C,, molecule is specifically given in symmetrized Radau 
coordinates. Section III contains our choice of (direct 
product) basis functions for the effective vibrational mo- 
tions. Both the finite basis representation (FBR) and the 
DVR of the Hamiltonian matrix are presented. This sec- 
tion also contains evaluations of different potential energy 
surfaces available for the HZ0 system, and our modifica- 
tions of the PES’s to force physically reasonable behavior. 
In Sec. IV computational results of accurate vibrational 
energies, with the normal mode assignments, for both sym- 
metric and antisymmetric symmetry groups of Hz0 are 
presented up to -27 000 cm-’ above the zero-point en- 
ergy. The computed energy levels are compared to the ob- 
served levels. The wave functions of H,O in a wide range of 
energy levels provide qualitative information regarding the 
dynamical mixing of the vibrational modes. Discussions of 
various analyses on the states up to - 30 000 cm-’ are also 
presented in this section. Local mode characteristics of 
states and couplings of eigenstates due to Fermi resonances 
and Darling-Dennison resonances are studied. Separability 
in the symmetrized Radau coordinates (which are similar 
to the normal modes) is described in terms of natural or- 
bital expansions. Statistical studies on the energy level 
spacing distributions are included for two different PES’s. 
Section V contains our concluding remarks. 

A. Hamiltonian and coordinate systems 

The internal valence coordinates (r,,r2,p), which are 
specified as the two bond lengths and the angle between the 
bonds, are transformed to a set of orthogonal internal co- 
ordinates, such as Radau coordinates (R&,0), to sim- 
plify the kinetic energy operator. Radau coordinates are 
convenient to use for triatomic molecules for which the 
central atom is heavier than the other two atoms.*l In such 
systems, Radau coordinates closely resemble the valence 
coordinates, and the two coordinate systems are related 
according to 

R1=(CL+l--g)*rl+(g--)*r*, 

R2= (p-gh+m , 

cos e= ,“,:f:, , 

where 

(14 

(lb) 

(lc) 

m3 
l/2 

iJ= 
( ) mlfm2-km3 ’ 

ml+m+ 
g= 

ml-i-m2 ’ 

in which ml and m2 are the masses of the two end atoms, 
and m3 denotes the mass of the center atom. 

For symmetric (C, v) triatomic systems, linear combi- 
nations of the mass-weighted Radau stretching coordinates 
(R ,,R2) define symmetrized stretching coordinates (R,r). 
With this symmetrization, the coordinates reflect the sym- 
metry properties of the molecular vibrational motions un- 
der the specific a-symmetry operation (of reflection 
through the molecular plane of symmetry). Thus R and r 
are symmetric and antisymmetric upon the exchange of 
(mass-weighted) R, and RZ, respectively, 

R=(R1+Rd/v”i, @a) 

r=(RI-R2)/v2. (2b) 

The symmetrized Radau coordinates strongly resemble the 
normal coordinates for C,, systems. The vibrational 
Hamiltonian for a C2, molecule in terms of the symme- 
trized Radau coordinates (R,r,8) can be written as 
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&,bw,r,e) =~R+1Gr+&+ hwo, 
in which m=ml =m2 and 

(3) 

A -fi2 a2 
KR=Kp 

-+i2 a2 
c=?;;;p 

A --+?~a a 
Ke= 

-~ 
21 sin 8 de - sin 8 3 , 

(4a) 

(4b) 

(4c) 

and 

The volume element is dr=dR dr sin 8 de, for the coordi- 
nate ranges of O< R < CO, - CC <r< CO, O<&n. The coor- 
dinates (R,r$) correspond to the symmetric stretching, 
antisymmetric stretching, and the bending motions. 

(5) 
quired at different angles. A globally appropriate range 
must include the absolute minimum and the absolute max- 
imum R that are accessed over all angles. Under such cir- 
cumstance, a uniform basis over the interaction coordinate 
range seems to be most appropriate for R. The normalized 
Chebychev (First kind) polynomials, {Fl( R)}, which are 
shifted and scaled, can generate a DVR basis which yields 
an evenly spaced set of DVR points. Moreover, the DVR 
points lie within the specified coordinate range and there- 
fore do not lie on the boundaries at which singularities may 
exist. 

The optimal choice of basis functions depends on the 
type of internal coordinate system used, the potential en- 
ergy surface, the number of accurate eigenvectors desired, 
and the method of solution of the Schrodinger equation. 
The efficiency and accuracy of a computation of eigenfunc- 
tions and eigenvalues are strongly dependent on the choice 
of the basis functions in which the Hamiltonian matrix is 
represented. We show in this section that with proper at- 
tention to the physics of the molecular system, basis func- 
tions can be chosen to have appropriate boundary condi- 
tions and to minimize the problems of the inherent 
singularities in the kinetic energy operators. Since the (di- 
agonal) representation of the potential energy matrix is 
quite easy in the DVR, the basis functions may be chosen 
from a wide range of available analytic functions. 

B. The discrete variable representation 

The general characteristics of our symmetrized Radau 
coordinate system are such that small values of the sym- 
metric stretching coordinate R correspond to the three at- 
oms close to each other, while large R will correspond to 
one of the possible dissociation configurations. Both large 
and small values of R lie in regions of very high potential 
energies, and the lower energy range of R is strongly de- 
pendent on angles. In a C2, molecule, the r=O configura- 
tion corresponds to the equilibrium structure and the po- 
tential energy surface is symmetric about r=O. The angle 8 
ranges from 0” at the O-H-H linear configuration to 180 
at the linear H-O-H configuration. The potential energy 
function varies substantially in angle and has a single min- 
imum well between these two (limiting) linear configura- 
tions. 

However, it is clear from Eqs. (3) and (4a)-(4c) that 
the kinetic energy operators exhibit singular behavior at 
linear configurations, 8=0” or 180”, and for R, =0 or R, 
=0.22 Although this is a natural consequence of the choice 
of this (and most) internal coordinate system, it has 
caused substantial problems and comment in earlier treat- 
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ments. In particular, discussions of approximate Hamil- 
tonian formulations such as normal coordinate Hamilto- 
nians, “rigid bender” Hamiltonians, etc. have been 
concerned about these terms. An appropriate basis and 
coordinate system will, however, minimize the problem of 
effective potential singularities and permit easy symmetri- 
zation to reflect the proper C,, symmetry desired accord- 
ing to the boundary conditions. The boundary conditions 
and the nodal structures of the basis functions must be 
appropriate for the physical properties and the symmetry 
of the Hamiltonian operator in the specific internal coor- 
dinates. 

Because of the strong asymmetry of the potential en- 
ergy function, widely different coordinate R ranges are re- 

The symmetrization of Radau coordinates has gener- 
ated a stretching coordinate r which carries the symmetry 
signature of the system. The equilibrium configuration of a 
C2, molecule corresponds to r=O about which the 
potential-energy surface is symmetric. Furthermore, a vi- 
brational eigenstate of a C,, molecule can be symmetric or 
antisymmetric about r=O. Utilizing such molecular sym- 
metry the Hvib matrix may be reduced to a block-diagonal 
structure. Harmonic oscillator functions, {Xi(r)}, consist 
of symmetric and antisymmetric functions about r=O, for 
even and odd j, respectively. The harmonic basis of each 
symmetry may be transformed to the DVR to yield two 
half-sized DVR bases that correspond to different symme- 
tries. Symmetric or antisymmetric vibrational eigenstates 
are expanded exclusively in terms of the basis with proper 
symmetry. 

The potential energy surface of a C,, molecule is quite 
asymmetric in the angle 8 of Radau coordinates. There- 
fore, our basis should be flexible in order to adjust for the 
asymmetry of the potential about 90”. Jacobi polynomials, 
~~“~“(x)}, seem most suitable in this regard. The bound- 
aries of the interaction range [O,r] correspond to two dif- 
ferent linear configurations. The parameter LI of Jacobi 
polynomials is chosen to accommodate the asymmetry of 
the PES in 8, and b is determined according to the bound- 
ary condition as 8 -+ 180”. For pure vibrational states which 
must be symmetric about the C2(z) axis, the amplitude of 
pyb must be finite as 0-+ 180” which requires 6=0. Since 
the potential-energy function is extremely repulsive as 
8-o”, the parameter u can be adjusted to cover only the 
effective range of 0, for the given energy range. 

The vibrational wave functions are now expanded in 
the direct product basis of Chebyshev polynomials, 
{Fl( R)}; harmonic-oscillator functions, {GYj( r)}; and 
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Jacobi polynomials, ~~a,b)(x)}, where x=cos 8. The di- 
rect product basis for a finite basis representation (FBR), 
C~lii>, of the internal coordinates is written as 

t,Q(R,r,O) =Fl(R)X( )#“‘)(x). Jr 1 (6) 

Since the evaluation of the vibrational Hamiltonian oper- 
ator is computationally much more accurate and faster for 
the direct product basis in the DVR, {x,,}, the FBR basis 
is transformed to the DVR; namely, 

Pvrv’ 
s 

b(q) *v#4qW. (lib) 

{f,} and {&} denote related FBR and DVR bases, respec- 
tively. t is then defined as the eigenvector matrix of a, and 
q is the diagonal matrix of its eigenvalues; namely, 

(12) 

xaSrUV,@ = c T?~y*$~~W,r,e) 
l&i 

=l? (R)+B(r)O’~6)(x) a Y ’ (7) 

in which the T matrix is defined as the direct product of t 
matrices for the three internal coordinates 

The {q,,} are defined as DVR points. From Eqs. ( 1 lb) and 
( 12), it follows that the DVR basis functions are the eigen- 
functions of the coordinate operator. Furthermore, the N- 
point Gaussian quadrature approximation to Eq. ( 1 la) 
substituted into Eq. (10) gives 

cw= &G’fn(cLJ (13) 

T’ii 
MY 

=tR.t): .t@ 
k-i S ir 

in which {w,) are the Gaussian weights, {q,,} are the 
Gaussian quadrature points, and if,,) denote a class of 
normalized orthogonal polynomials of the FBR with n 
specifying the order of a function.16 

and 

l-,(R) = 7 &-6(R), (84 

Qp( r) = C $-Xj(r), 
i 

(8b) 

@y’(x) = c. t;-fy’(X). (8~) 
i 

The DVR basis for coordinate r can be symmetrized to 
yield two half-sized bases, {‘Qa( r)} and CAQB( r)}, which 
are symmetric and antisymmetric with respect to reflection 
about the molecular symmetry axis, respectively. The re- 
sulting DVR direct product basis of internal coordinates 
can, therefore, also be separated in terms of the symmetries 
of vibration eigenfunctions. The symmetrized DVR direct 
product basis, {‘g’xcl,+}, where (g) =S or A, easily yields 
the very sparse Hvib matrix of Eq. (3), which is block 
diagonal in symmetry, 

Here, tR, tr, and te are the FBR-DVR transformation ma- 
trices for Chebyshev polynomials, harmonic oscillator 
functions, and Jacobi polynomials, respectively. The trans- 
formation matrices of Eqs. (8a)-( 8c) are orthogonal, and 
are determined as the diagonalizing transformation for the 
appropriate coordinate matrices in the FBR. Thus, we 
have 

KR a,a.a13’84yty-Sgrg= J x$J,- (-2) *x$3$% ( 144 

6 da . (g)Kr B’&+r*6g*g= Xatpy’ j- (g’) *( -;) y$,h, (14b) 

c fn&w=~n9l 3 
Y 

(94 s X k’ 1 +-? 
= a’P’y*’ r ( 

--&isin8$ ~&j@, (14c) 
) 

c frdnv=~v~v * 
n 

(9b) V crsv ‘&fa ~6BtB4r~r4gtg= 
f 

x$&,. P(R,r,O) ~&QT, 

(lad) 
In order to evaluate the t-matrix elements, we look at 

the unique properties of coordinate matrices in the FBR, ii, 
and DVR, q. The orthogonal transformation between FBR 
and DVR gives 

q=t=+t, (10) 

in which 

in which dr=dR dr dx, and (g)Kr carries the signature of 
the molecular symmetry. The matrix element A,8 in Eq. 
(14c) represents the l/21 term, which is a function of 
(R,r) given by Eq. (5), evaluated at a DVR point ( R,,rp). 
The diagonal potential energy matrix V has as its elements 
{V,,} the potential energies evaluated at DVR points 
{R,,rS,xr}. The DVR kinetic energy matrices for the three 
internal coordinates, denoted by KR, (g)K’, and Ke, are 
obtained by transforming the equivalent matrices from the 
FBR. (A further discussion of the K matrices is presented 
in Appendix A.) Thus, the DVR Hvib matrix is written as Gn= J- f,p(q)-q.fn(q)dq, (lla> 
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=f W,R,, &Jy+y,+S,t, . (g)Kr 
4’B’hJ 

+&pba .SS’B.K~,Y+Vn&.Sa~a.S8’8 

‘S,t, , (15) 

in which sparsity of the matrix is self-evident. 

C. Diagonalization of the vibrational Hamiltonian 

A wavefunction of the nth vibrational eigenstate of a 
system may be expanded in the direct product basis of the 
optimum DVR functions for internal coordinates, 

Y,(R,r,B) = c ~&-xappr(R,r,@, 
MY 

(16) 

which is evaluated for a specific vibrational symmetry. The 
method of successive truncation is used to simplify calcu- 
lations of the vibrational states. This numerical method is 
extremely effective for evaluating eigenvectors and eigen- 
values of a large multidimensional Hamiltonian matrix in 
the DVR, in which coupling occurs in each dimension 
separately. (Further details regarding the method is given 
in Ref. 23.) 

The eigenvalue equation for the vibrational states in 
the DVR may be written as 

Hvlb*B=B*Evib 3 (17) 

in which Evib is the diagonal eigenvalue matrix for vibra- 
tional energy levels, and eigenvector matrix B contains the 
expansion coefficients of {S&,} in Eq. ( 16). In the DVR, 
the matrix elements {.%&} directly correspond to the 
amplitudes of the nth vibrational eigenfunction evaluated 
at the (c@r) DVR points; namely, 

WR,,r&$) =~&~~&, (18) 

where Rap,= (w,wpo,) “2, and {w~,w~,+,} denote the 
weights given in Eq. (13). 

III. BASIS FUNCTIONS AND POTENTIAL-ENERGY 
SURFACES 

Although H,O has been studied extensively both ex- 
perimentally and theoretically, the information pertaining 
to its potential energy surface at highly excited energy lev- 
els is still limited due to difficulties of investigating large- 
amplitude motions. Particularly unfavorable Franck- 
Condon factors have limited the information about highly 
excited bending states. Furthermore, the accuracies of ex- 
isting potential surfaces are still uncertain in terms of the 
bending coordinate. Our purposes in demonstrating an ef- 
ficient and accurate numerical method for computations of 
Hz0 vibrational eigenstates are, therefore, twofold, First, 
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our calculated energy levels are compared with those that 
are experimentally measured. Although these measured 
states include only relatively low bending states, the accu- 
racy of our surface and computational method will be dem- 
onstrated. Second, energy levels and various analyses of the 
wave functions are presented for highly excited bending 
and stretching states which range up to -40% of the dis- 
sociation energy. These states have not been observed yet 
experimentally; however, we have focused in characteriz- 
ing the known PES’s and comparing the similarities as well 
as differences in their topological features for future exper- 
imental investigations. 

A. Potential-energy surfaces 

This section contains our comments on different H,O 
potential energy surfaces which are available. Two types of 
PES’s have been used in our computations, based on those 
of Carter and Handy (CH) and of Jensen (JN). Carter 
and Handy24 have improved the surface that was originally 
generated from an anharmonic force-field calculation by 
Hoy, Mills, and Strey (HMS) .4 Recently, Jensen” has de- 
termined a more accurate PES of H20 from the Morse- 
oscillator-rigid-bender internal dynamics (MORBID) 
program. The JN’s surface has included additional energy 
levels observed for higher-lying stretching states. 

HMS first carried out force-field calculations for the 
potential energy surface (PES) of H20 up to quartic terms 
of a Taylor’s expansion in displacements of internal coor- 
dinates. Various authors have made contributions to im- 
prove the HMS surface since then.25-27 Halonen and Car- 
rington carried out variational vibrational calculations 
for energy levels of J=O H,O in which the Morse variable 
was used as the stretching coordinates. In their calcula- 
tions force constants of the HMS PES were rederived in 
terms of Morse variables. 

Despite many improvements, the potential surfaces 
generated from the force-field calculations obviously do 
not have accurate asymptotic (dissociation) behavior. Fur- 
thermore, the correct symmetry properties of the system 
are not explicitly imposed on the function. The variables 
(Ar,,Ar2,Af3) are allowed to vary from - 03 to + CO with- 
out being restricted by specific boundary conditions, such 
as a periodicity of the bending coordinate. Thus, the HMS 
surface itself cannot yield proper convergence in computa- 
tions of highly excited states. These are mainly states of 
large-amplitude bend motions, with amplitude at the H- 
O-H ( 8= a) linear configuration. 

In order to fix this artifact of the HMS surface as 8-+ ?r 
Carter and Handy imposed the proper boundary condition 

i9Vl - 
ae r* $=O 

at 0=r. The modification restores a proper symmetry 
around 8-+n; however, it adversely affects the PES in the 
vicinity of the O-H-H (f3=0) configuration. Repulsive 
forces between the two H atoms are somehow canceled out 
by the modification, and the potential between them be- 
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comes attractive even at small H-H distances relative to 
the H, equilibrium bond length. The asymptotic behavior 
for (O-H-H) linear configurations leading to the H,+O 
limit is incorrect at higher energies, which are well above 
the f3=n barrier. 

The basic characteristic of a Taylor’s expansion limits 
the adequacy of the HMS surface for states involving large- 
amplitude motions which are still far short of the dissoci- 
ation limits. Sorbie and Murrell (SM) have described a 
method of constructing analytical potentials which have 
proper asymptotic behavior at the dissociation limits. Since 
the SM surface has proper symmetry properties of the mol- 
ecule, leading to correct asymptotic atom-diatom dissoci- 
ation limits, it would be preferred for collision dynamical 
calculations involving H,O. However, its accuracy around 
the equilibrium geometry falls far short of that of the HMS 
surface. The energy levels computed from SM’s surface are 
not adequate for comparison to the observed high- 
resolution spectroscopic studies. Since our purpose was to 
demonstrate the accuracy of our method for variational 
computations, the SM surface was not appropriate. 

Jensen’s PES, which is obtained from MORBID, 
yields the most reliable calculated energies extending as 
high as eight stretching quanta ( -25 000 cm-’ above the 
zero-point energy). It is predicted to break down for highly 
excited stretching states and has a problem similar to that 
for CH’s PES for 8-O at small H-H distances. In order to 
correct the unphysical behavior of these surfaces in the 
vicinity of the O-H-H (8 = 0) configuration, we have in- 
cluded an additional repulsive term for the H-H interac- 
tion; namely, 

V(r,,r,,p) = fl+ v&H, (19) 

in which p is the original (unmodified) potential energy 
and 

v&H= i ci exp[ -ai(rHH-dHH) 1 
i=l 

and 

in which C/s, flls, ‘ys, y=, and 6 are constants given in Table 
I. rnn is the H-H distance, and dnn is a fraction of the 
equilibrium Hz bond distance, &n. The modification does 
not change the original CH and JN surfaces at large angles, 
and up to - 18 000 cm-’ above the zero-point energy in 
the vicinity of 8=0. It generates a proper repulsive wall for 
small H-H distances. The one-dimensional (1D) cuts of 
the JN PES’s are presented in Fig. 1 as a function of r for 
the O-H-H (8 = 0) configuration at R = 1.4 A. Unless spe- 
cifically noted, the results presented in the following sec- 
tions are computed from the modified JN PES. 

TABLE I. Constants used in the modification of potential-energy surfaces 
of Carter and Handy, and Jensen. 
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Cl 50.0 cm-’ 
c2 10.0 cm-’ 
BI 22.0 A 
82 13.5 A 
Ys 0.05 A-’ 
16 0.10 A-’ 
6 0.85 

B. Basis sizes and convergence 

Once the choice of the basis is made, the factors that 
govern the convergence of our variational calculation are 
the sizes of bases for each coordinate, energy cuts at each 
successive truncation, and the coordinate ranges included 
in the computation. In Table II, we have presented a brief 
summary of various convergence tests of our 3D calcula- 
tions using JN’s surface. On the right-hand side we list the 
number and maximum energies of vibrational states con- 
verged to a given accuracy. 

A typical calculation is done using 22 Chebyshev 
(first-kind) polynomials for the symmetric stretching co- 
ordinate (R ), 22 Hermite polynomials for the antisymmet- 
ric stretching coordinate (T), and 30 Jacobi polynomials in 
x( GCOS 0) with (c@) = (8,0). We denote this as the 
(22,22,30) basis for (N,,N,N,). Since the Hz0 potential- 
energy surface is not symmetric about 8=?r/2 in Radau 
coordinates, Jacobi polynomials are more suitable than as- 
sociated Legendre functions. The value of (Y in Jacobi poly- 
nomials adjusts the minimum angle for the effective angle 
8 range; a can be chosen to maximize the convergence of a 
computation for a given basis size and the desired accuracy 

Jensen’s H20 PES for O-H-H 

35oool 0.00 0.25 
r (A) 

0.50 0.75 

FIG. 1. The original and the modified Jensen potential energy surfaces 
are plotted for the O-H-H (e=O) configuration as a function of r at 
R = 1.4 A. r=O corresponds to the case when the two H atoms are sitting 
on top of each other. 
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TABLE II. Convergence tests. 

Input parameters Convergences (cm - ’ ) 

R (A, r (b;) 
4’3D 

(N,w~,Ne) (ah’) h’2D,,, N24m (symm,asym) (0.01 cm-’ (0.05 cm-’ GO.20 cm-’ 

(22,22,30) [0.94,2.12] [ -0.65,0.65] (V.3) 42 Oil0 8 (966,846) 2oOMl (133) 22 500 (186) 25 000 (252) 

(30,30.30) [0.92,2.20] [ -0.80,0.80] (WI 45 ooo 8 ( 1182,102O) 22500 (186) 25 000 (252) 27 800 (341) 

(30.30,45) [0.90,2.25] [ -0.75,0.75] (lO,O) 45 ooo 8 (1752,1539) 22 500 (186) 26 000 (270) 29O@J (417) 

(35,34&O) [0.92,2.30] [ -0.80,0.80] (890) 43 ooo 8 (1986,1728) 22 500 (186) 25WO (252) 27400 (323) 

(35.34.45) [0.90,2.35] [-0.85,0.85] (590) 48 000 8 (2040.1815) 27ooO (313) 29700 (412) 31 700 (502) 

of the highest excited bend state. In contrast to the sharply 
repulsive behavior of the PES for 8-0, the energy barrier 
to the H-O-H (8-r) linear configuration, Eb, is fairly 
low. For the equilibrium O-H bond lengths, Eb is - 12 500 
cm-’ at 8= P. /?=O allows finite amplitudes at &a for 
highly excited bending states (above the barrier). Advan- 
tages of Jacobi polynomials over associated Legendre func- 
tions become more crucial for calculations of nonzero ro- 
tational states. Our work on J>O rovibrational states of 
H,O is currently in preparation for publication. 

The sequential diagonalization/truncation (SDT) 
method23*29*30 has been used to generate the final 3D- 
vibrational Hamiltonian matrix, evaluated in the 2D- 
eigenvector basis. First, a lD-eigenvector basis is com- 
puted for every positive r and every third 8 DVR point. 
Since the PES is symmetric about r=O, only half of the 
r-DVR points are unique. The PES is not a rapidly varying 
function in 8; consequently, a 2D-eigenvector basis evalu- 
ated at a given DVR point is a good approximation for its 
nearest-neighbor 8 points. Therefore, for each of the (N,/ 
2) x (NB/3) (r,(9)-DVR points, the NRxNR 1D Hamilto- 
nians are diagonalized, and the NR eigenvectors are then 
truncated to a smaller number P,,(&y), according to an 
energy cutoff, EID (usually 90 000 cm-‘). The number 
kept, Prn(p,r), will be different for different (r@,)-DVR 
points. 

In symmetrized internal (Radau) coordinates, the 2D 
Hamiltonian is block diagonal. Furthermore, 2D calcula- 
tions can be carried out separately for stretching states of 
each symmetry. The block-diagonalized 2D Hamiltonian 
in DVR is then transformed to the truncated lD- 
eigenvector basis, which forms much more efficient and 
accurate basis. Compared to the DVR basis size for the 2D 
Hamiltonian, which is NR X (N,./2) = 242, the actual sizes 
NZD(y) =8#,n(P,y) range between 140 and 165. At ev- 
ery third 8-DVR point, the 2D eigenvectors are evaluated 
and then truncated according to the energy cut, E2D (usu- 
ally 43 000 cm-’ ). For low bending states (even with 
highly excited stretching states), truncation of the 2D 
eigenvectors according to the energy criteria is much more 
effective than saving a fixed number of 2D eigenvectors. 

For convergence of highly excited bending states, how- 
ever, an extra constraint was used in order to generate the 
most efficient 2D-eigenvector basis. For small 0’s, the po- 

tential energy surface has characteristics of a weakly bound 
system. As the H-O-H angle decreases the molecule starts 
to explore a much wider range of stretching configurational 
space, and the floppiness of molecules induces extensive 
mixing between stretching and bending coordinates. Trun- 
cation using a strict energy criterion does not provide a 
sufficient number of 2D-stretching eigenvectors for good 
convergence of the 3D-vibrational states involving highly 
excited bending states. Thus, we keep a minimum number 
F$’ of 2D eigenvectors at every &DVR point. In Table III 
we compare the convergence of two calculations, one of 
which is obtained using a strict energy cut and the other 
using the additional P$” = 8 constraint with a little lower 
energy cut. The 3D Hamiltonian in DVR is finally trans- 
formed to the truncated 2D-eigenvector basis for each sym- 
metry. A 2D-eigenvector basis is used for three consecutive 
0’s, which include the one at which the 2D eigenvectors are 
generated and its two nearest-neighbor DVR points. Be- 
cause of the SDT procedure, Nsn, the size of the 3D 
Hamiltonian in the 2D-eigenvector basis of a given sym- 
metry, is much less than the DVR basis size NR X (N/2) 
X N@ For example, an initial basis of 7260 functions may 
be reduced to less than 1000. 

The effects of varying basis size, energy cuts, and 
N2D,i, are shown in Table II, which gives the relevant 
sizes and the maximum energies and numbers of states 
converged to a given level. The convergence is checked 
against energy levels computed from (N,,N,N,) 
= (30,30,45), ElD,,,= 100 000 cm-‘, .&‘2o,,,=49 000 

TABLE III. Convergence tests. 

NWim E%t, NWD Convergence 

(cm-‘) (0.05 cm-’ (0.20 cm-’ 

Symm 0 42 500 948 19 800 (80) 21 300 (96) 
8 41 ooo 927 22500 (111) 25OC0 (148) 

Asym 0 42 500 798 22 300 (73) 24 600 (98) 
8 41 ocm 783 22 500 (75) 25000 (104) 
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cm-‘, and N2D,i”= 10, which results in NsD=2136 and 
1884 for symmetric and antisymmetric states, respectively. 
The results are summarized in Table II. 

A. Accuracy of the computational model 

IV. RESULTS AND DISCUSSIONS 

The nature of energy flow within polyatomic molecules 
is an important factor controlling chemical kinetics. Inves- 
tigations of energy flow based on classical mechanics and 
the theory of chaos in small systems have given consider- 
able insight. Classically, chaotic dynamics and global en- 
ergy flow may arise from the overlapping of various reso- 
nances.31 Much less is known, even classically, about the 
fully coupled dynamics of multidimensional vibrating mol- 
ecules. Quantum mechanical studies based on perturbation 
theory and statistical models like those first evolved in nu- 
clear physics have been carried out in order to characterize 
the dynamical properties of the vibrational and rovibra- 
tional energy level structure of H,O. 

The lowest 100 (J=O) states of the computed 3D- 
vibrational energy levels are given in Table IV for both 
modified JN and CH PES’s and are compared with ob- 
served values, where available. Table V contains energy 
levels of highly excited stretching states that have been 
observed experimentally.‘g With the same input parame- 
ters, calculations are also carried out for the original (e.g., 
unmodified) PES’s. The results were within the ho.01 
cm - ’ of the tabulated values. The energy levels listed in 
Tables IV and V are converged to (0.005 cm-‘, and the 
computation is carried out for the (22,22,30) basis which 
is reduced to N3D= (600,400) via the SDT according to 
E2D,,,=40 000 cm-’ and P$“= 8. Our computed vibra- 
tional energy levels of the modified CH and JN PES’s are 
slightly different from those published by Femley, Miller, 
and Tennyson.32 Their normal mode assignments also oc- 
casionally differ from ours. 

Accurate calculations of highly excited vibrational 
states reveal detailed characteristics of the PES. The nor- 
mal modes can be assigned by analyzing the nodal patterns 
of wave functions. The assignments are made following the 
most conventional notation, noted by (y1yZy3) with y1 
= symmetric stretch, v2 = bend, and v3 = antisymmetric 
stretch. In case of states which are strongly mixed by res- 
onances, the expectation values for (R2), (g), and 
(cos2 0) are used as a guide to make proper assignments. 

Based on the simple model studies for the correspon- 
dence between normal modes and local modes, the degen- 
eracies are examined for local-mode pairs. Our analysis 
shows that the energy levels at which the normal to local 
mode transitions occur are strongly dependent on the mag- 
nitude of v1 + y3 and the extent of mixing between v, and 
v2. The effects of mode mixings on the resonances are dis- 
cussed. The entropies of mixing, which are evaluated from 
the natural orbital expansion analysis, demonstrates the 
separabilities of vibrational modes. For states of low v2 the 
entropies are quite small even at high energies. The quali- 
tative changes in energy level spacings and pattern of mode 
mixings are studies as the bending energy increases beyond 
the barrier to linearity (H-O-H). The statistical evalua- 
tions of energy level spacing distributions are presented in 
order to demonstrate the differences in the topological 
characteristics of the JN and CH potential energy surfaces. 

The accurate energy levels of highly excited states are 
listed in Tables VI and VII for the modified JN surface. 
The tabulated values are converged to better that 0.05 
cm-‘, and the assignments are given in normal-mode rep- 
resentation. The normal mode assignments are made by 
simply counting the nodes of the eigenvectors evaluated in 
the DVR. The 3D eigenvectors in symmetrized Radau co- 
ordinates are good approximations to the wave functions in 
normal coordinates. In general, the DVR eigenvectors are 
equal to the true wave functions evaluated at the DVR 
points times analytically known weight factors. The expec- 
tation values for (R2), (?), and (cos2 6) are computed 
using the eigenvectors. 

A large portion of the PES for H,O is still not accu- 
rately known due to a lack of experimental information for 
bending states of v2>4 for nonzero v1 or v3 states, and most 
of stretching states (vl+v3))6. In Tables VI and VII, 
however, we have given accurate energy levels and their 
normal-mode assignments up to 27 000 cm-’ for the 
(model) PES of H,O. This information is useful in ana- 
lyzing the various resonance features, as well as their effect 
on transitions from normal to local mode basis according 
to the given PES. The characteristics and the extent of the 
dynamical mixings of the zeroth-order (normal) vibra- 
tional modes can also be demonstrated. 

In the following section we present the actual compu- 
tational results for the modified JN and CH potentials and, 
where possible, compare with experiment. This shows that 
both surfaces yield quite good fits of known energy levels 
up to some 18 000 cm-’ above zero point, and thus con- 
stitute quite reasonable bases for analysis of the vibrational 
behavior of higher energies. We then examine these sets of 
states with respect to local/normal mode behavior, separa- 
bility of normal modes via natural orbital expansion, a 
brief look at the role of Fermi resonances, and finally the 
energy level spacing distributions. As will be seen, the 
overall picture, at least up to 30 000 cm-’ above the zero 
point, is not adequately characterized by any of the simple 
models. 

B. Transition from normal mode to local mode 

Local modes for systems with a heavy central atom 
were proposed by Lehmann and others and have been in- 
tensively investigated, particularly for two (stretch) mode 
models.33-35 In the strict local mode limit, the coupling 
between the bond oscillators is zero. The larger the mass of 
the central atom (in comparison to the end atoms), the 
weaker the kinetic coupling between the two bonds. Clas- 
sically, a tunneling time between excitation of the two 
bonds may be related to the splitting between the two de- 
generate normal mode states of differing symmetry. The 
Darling-Dennison (DD) resonances, which couple ( v1v3) 
and ( v1 *2y3F2) states, are analyzed in terms of excita- 
tions in stretch modes. The mixing of normal modes via the 
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TABLE IV. Lowest 100 vibrational energy levels of H,O of either symmetry computed from the modified 
JN and CH surfaces. The computed energy levels are compared to those observed. Energies are given in 
cm-‘, and are measured from the ground vibrational states (O,O,O) E=4636.455 and 4630.350 cm-’ for the 
CH and JN surfaces, respectively. 

7039 

(q, 1’2, ((3) cbsa A&i AGd (VI, v,, VJ c%.s a AEtCH AtiN 
(0 1 0) 
(0 2 0) 
(1 00) 
(0 01) 
(0 3 0) 
(1 10) 
(0 1 1) 
(0 4 0) 
(1 20) 
(0 21) 
(2 0 0) 
(I 0 1) 
(0 0 2) 
(0 5 0) 
(1 301 
(0 311 
(2 1 0) 
(1 11) 
(0 6 0) 
(0 1 2) 
(1 40) 
(0 41) 
(0 7 0) 
(2 2 0) 
(1 21) 
(0 2 2) 
(3 0 0) 
(2 01) 
(1 02) 
(0 0 3) 
(1 50) 
(0 8 0) 
(0 51) 
(2 3 0) 
(1 311 
(0 3 2) 
(3 1 0) 
(2 11) 
(1 60) 
(1 12) 
(0 9 0) 
(0 61) 
(0 1 3) 
(2 4 0) 
(1 41) 
(0 4 21 
(1 70) 
(3 2 0) 
(2 21) 
(0 10 0) 

1594.747 
3151.631 
3657.054 
3755.924 
4666.808 
5234.985 
5331.241 
6134.03 
6775.095 
6871.521 
7201.54 
7249.822 
7445.07 

. * * 

8273.977 
8373.848 
8761.579 
8807.002 

. . . 

9OC0.140 
. . . 

9833.58 
. . . 

10 284.4 
10 328.72 
10 524.3 
10 599.66 
10 613.41 
10 868.86 
11 032.4 

. . . 

. . . 

11 813.19 
. . . 

12 139.2 
12 151.26 

. . . 

12 407.64 
. . . 
. . . 

12 565.0 
. . . 

13 256 
13448 

. . . 

13642 
13 652.65 

. . . 

0.655 -0.428 (0 71) 
0.331 0.380 (2 0 2) 

-0.733 -0.569 (3 0 1) 
0.319 0.011 (1 22) 

-1.316 0.889 (0 2 31 
-0.527 -0.700 (4 0 0) 

1.300 0.826 (1 03) 
-4.852 0.090 (0 0 41 
-3.123 - 0.074 (2 5 0) 

1.062 1.954 (1 5 1) 
2.815 1.127 (1 8’3) 

- 1.016 1.121 (0 5 2) 
-2.441 -0.124 (0 81) 

753 1.43 1 7539.806 (3 3 0) 
- 7.499 -0.734 (2 31) 
-0.518 1.801 (0 11 0) 

2.400 1.288 (2 1 2) 
-0.884 2.596 (3 11) 

8849.971 8863.226 (1 32) 
-2.649 2.007 (0 3 3) 

9711.739 9719.763 (4 1 0) 
-4.159 -0.981 (2 6 0) 

10 053.986 10 073.849 (1 13) 
- 3.080 1.339 (1 6 1) 
-4.255 3.689 (1 90) 
- 6.823 1.307 (0 1 4) 

8.682 3.113 (0 91) 
3.342 2.191 (0 6 2) 

- 11.937 0.466 (3 4 0) 
- 2.847 1.711 (2 41) 

11 087.290 11082.283 (0 12 0) 
11 200.885 11 234.379 (1 42) 
11 232.105 11 235.226 (3 2 1) 
11 756.656 11 766.215 (2 2 2) 

-9.555 2.287 (3 0 2) 
12 000.803 12011.521 (2 0 3) 

7.801 5.261 (0 4 3) 
2.665 5.272 (2 7 0) 

12 363.878 12 340.755 (1 7 1) 
- 14.845 0.774 (4 2 0) 

12 458.406 12 504.089 (1 10 0) 
12 565.805 12 567.072 (1 23) 

- 5.022 6.369 (0 10 1) 
13 185.600 13 195.805 (0 7 2) 

- 16.298 -3.454 (5 0 0) 
-5.010 5.603 (4 01) 

13 625.418 13 604.841 (0 2 41 
-0.472 5.746 (1 041 
-4.486 6.073 (3 5 0) 

17 756.449 13 793.447 (2 5 1) 

. . . 
13 828.3 
13 830.922 
13 910.8 
14 066.193 
14 221.143 
14 318.802 
14 536.87 

14 640 

. . . 

15 107 
15 119.026 

15 344.499 
15 347.949 

. . . 

. . . 

15 742.787 

15 832.757 
. . . 
. . . 
. . . 
. . . 
. . . 
. . . 
. . . 

. 
. . . 

16 821.635 
16 825.23 
16 898.42 
16 898.842 

. . . 

. . . 
17 227.7 

. . . 

17 312.539 
. . . 
. . . 

17 458.354 
17 495.528 

. . . 

17 748.073 
. . . 
. . . 

13 801.350 13 799.253 
12.136 1.424 
10.129 1.127 

-21.608 0.914 
-8.363 9.801 

- 10.760 2.354 
- 17.519 2.699 

-5.156 4.454 
14 556.170 14 549.224 

- 15.253 -9.717 
14 760.300 14 778.301 
14 840.392 14 858.931 
14 932.060 14 932.744 

-9.664 2.671 
- 14.127 3.565 

15 180.972 15 181.417 
16.193 5.670 
8.420 7.346 

15 341.740 15 377.063 
15 521.627 15 545.301 

- 16.324 1.300 
15 842.397 15 809.300 

- 22.490 6.345 
15 943.557 15 922.756 
15 948.181 16 023.707 
16 036.006 16 057.600 
16 074.689 16 108.231 
16 175.213 16 187.037 
16 511.609 16 525.427 
16 521.346 16 541.190 
16 678.219 16 654.45 1 
16 759.865 16 784.274 

- 3.673 2.235 
- 5.264 0.837 

16.389 1.089 
16.026 0.739 

16 948.038 16 974.657 
17 087.179 17 054.741 
17 186.869 17 156.820 

-31.144 - 1.634 
17 207.477 17 312.440 

-31.886 7.789 
17 323.928 17 374.853 
17 430.798 17 434.882 

- 8.190 - 1.202 
- 20.696 1.504 

17 508.957 17 542.433 
- 30.377 6.459 

17 877.326 17 877.874 
17 891.515 17 903.164 

‘I?$$ denotes the observed energy levels given in Ref. 19. Ah&, = ECH - Eobs, and AeN = EJN - Eabs, in 
which EC- and EJN are the vibrational energy levels computed using the modified potential energy surfaces 
of CH and JN, respectively. 
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TABLE V. Energy levels of highly excited stretching states compared to 
those observed. Energies are given in cm-‘. 

(v,, % v,) -Gbs= A&i A6-i 

(3 3 1) 18265.820 -13.988 -4.863 
(3 1 2) 18392.974 12.540 10.995 
(2 1 3) 18393.314 12.010 11.520 
(4 1 1) 18989.961 -28.945 6.440 
(3 4 1) 19 640 7.593 27.215 
(3 0 3) 19 781.104 5.113 -23.786 
(2 0 4) 19782 4.303 -24.922 
(5 0 1) 20543.137 -19.496 -0.922 
(2 1 4) 21221.569 -6.527 -16.680 
(3 1 3) 21221.828 -6.820 -15.998 
(3 0 4) 22 529.3 7.546 -52.341 
(2 0 5) 22 529.445 7.377 -53.395 
(3 0 5) 25 118.428 12.714 -83.102 

“A& denotes the observed energy levels in Ref. 19. Atic” = Ecn - Eobs, 
and AA& = I& - J?&, in which ECH and EIN are the vibrational energy 
levels computed using the modified potential energy surfaces of CH and 
JN, respectively. 

DD interactions results in states that are more simply de- 
scribed by local modes. Local modes are noted as [nm]‘b, 
in which n and m denote the stretching quanta in each 
bond and b denotes the bending quanta. As the anharmo- 
nicity in the O-H bond stretches increases, the interbond 
coupling becomes weaker and the vibrational states make a 
transition from normal mode to local mode.33-36 If the 
zeroth-order picture is best described by normal modes, the 
low excited vibrational states would show strong coupling 
between the two local modes and clear separation of 
Darling-Dennison resonance pairs. As Y increases, how- 
ever, the Darling-Dennison interaction becomes dominant 
over the interbond coupling, and the normal basis starts to 
mix strongly. In reality the vibrations of a given molecule 
will correspond to a compromise between the two limiting 
cases, which depends on the topological characteristics of 
the potential energy surfaces. 

TABLE VI. Symmetric vibrational energy levels of H,O calculated using the JN surface. Energies are given 
in cm-‘. 

n (v,, v2, v,) J%-Ja n (v,, v2, VJ EL” n (v,, 9, Vj) -64. 

63 (1 52) 
64 (0 13 0) 
65 (2 8 0) 
66 (2 3 2) 
67 (3 1 2) 
68 (0 8 2) 
69 (4 3 0) 
70 (1 11 0) 
71 (5 1 0) 
72 (0 3 4) 
73 (3 6 0) 
74 (1 14) 
75 (1 62) 
76 (2 9 0) 
77 (2 4 2) 
78 (0 9 2) 
79 (0 14 0) 
80 (2 cl 4) 
81 (3 2 2) 
82 (4 4 0) 
83 (1 12 0) 
84 (3 7 0) 
85 (0 4 4) 
86 (5 2 0) 
87 (4 0 2) 
88 (1 72) 
89 (1 24) 
90 (2 10 0) 
91 (6 0 0) 
92 (0 10 2) 
93 (2 5 2) 
94 (2 1 4) 
95 (0 15 0) 
96 (0 0 6) 
97 (3 3 2) 
98 (4 5 0) 
99 (3 8 0) 

100 (1 13 0) 
101 (0 5 4) 
102 (1 82) 
103 (5 3 0) 
104 (4 1 2) 
105 (2 11 0) 
106 (1 34) 
107 (0 11 2) 
108 (2 6 2) 

18257.331 

18 119.682 

18272.006 
18 403.969 
18566.852 
18665.045 

18 172.311 

18 684.665 
18 958.419 
18 995.916 
19 148.224 
19 250.689 
19 376.422 
19493.063 
19664.822 
19695.475 
19725.491 
19757.078 
19883.532 
20055.970 
20126.492 
20377.122 
20398.165 
20428.273 
20532.285 
20638.087 
20709.799 
20731.617 
20913.135 
20914.649 
21020.257 
21204.889 
21277.726 
21284.273 
21332.285 
21377.841 
21545.071 
21652.376 
21757.548 
21831.166 
21842.567 
22011.076 
22050.281 
22 133.360 
22 208.244 
22303.928 

111 

109 

(4 

(6 

6 oj 
112 

1 

(2 

0) 

2 4) 

110 

113 

(3 

(3 

0 

9 0) 
114 

4) 

(0 1 6) 
115 (3 4 2) 
116 (0 16 0) 
117 (1 92) 
118 (0 6 4) 
119 (1 14 0) 
120 (5 4 0) 
121 (5 0 2) 
122 (2 12 0) 
123 (4 2 2) 
124 (1 44) 
125 (2 7 2) 
126 (0 12 2) 
127 (6 2 0) 
128 i4 7 oj 
129 (3 1 4) 
130 (3 10 0) 
131 (7 0 0) 
132 (3 5 2) 
133 (2 3 4j 
134 (0 2 6) 
135 (1 10 2) 
136 (1 06) 
137 (0 7 4) 
138 (0 17 0) 
139 (5 5 0) 
140 (2 8 21 
141 ii 15 oj 
142 (5 1 2) 
146 (1 54) 
144 (2 13 0) 
145 (4 3 2) 
146 (0 13 2j 
147 (2 0 

(4 
6) 

148 8 oj 
149 (6 3 0) 
150 (3 6 2) 
151 (3 11 0) 
152 (3 2 4) 
153 (7 1 0) 
154 (1 11 2) 

155 (0 8 4) 
156 (2 4 4) 
157 (0 3 6) 
158 (5 6 '3 
159 (1 16) 

22390.827 
22476.959 
22579.531 
22631.902 
22743.592 
22755.725 
22776.684 
22839.815 
22956.803 
23 104.239 
23 168.743 
23210.006 
23 380.846 
23 446.463 
23468.011 
23 521.137 170 (3 7 2) 
23541.071 171 (0 14 2) 

160 (2 9 2j 
161 (0 18 0) 
162 (1 64) 
163 (4 0 4) 
164 (4 4 2) 
165 (4 9 0) 
166 (1 16 0) 
167 (5 2 2) 
168 (2 14 0) 
169 (2 1 6) 

172 (6 4 0) 
173 (0 9 4) 
174 (3 12 0) 
175 (3 3 4) 
176 (6 0 2) 
177 ii 12 2j 
178 (7 2 0) 
179 (2 5 4) 
180 (0 4 6) 
181 (5 7 0) 
182 (2 10 2) 
183 (1 26) 
184 (8 0 0) 

23586.875 
23 815.333 
23 844.389 
23905.143 
23952.473 
23 981.179 
23 994.704 
24177.676 
24193.434 
24196.931 
24309.341 
24362.057 
24395.029 
24 510.074 
24667.417 
24725.352 
24776.462 
24836.461 
24 917.000 
24928.973 
24984.896 192 io 0 8j 
25035.096 193 (0 10 4) 
25086.363 194 (0 0 0) 
25217.600 195 (5 3 2) 
25 246.132 196 (6 5 0) 
25257.407 197 (2 2 6) 
25 349.054 198 (0 0 0) 
25439.946 199 (2 15 0) 
25488.3 18 200 (3 4 4) 

185 (1 74) 
186 (3 0 6) 
187 (4 10 0) 
188 (4 5 2) 
189 (1 17 0) 
190 (4 1 4) 
191 (3 8 21 

25 540.069 
25557.286 
25 601.052 
25729.910 
25760.401 
25858.184 
25941.090 
26046.813 
26097.334 
26 180.276 
26203.484 
26233.960 
26337.832 
26374.158 
26455.993 
26473.194 
26541.770 
26561.608 
26616.364 
26667.025 
26712.413 
26821.827 
26856.530 
26906.477 
26913.996 
26976.959 
26992.399 
27038.163 
27 166.932 
27278.631 
27290.117 
27418.387 
27430.372 
27452.780 
27476.584 
27 525.925 
27636.881 
27678.444 
27714.336 
27718.858 
27735.648 
27 840.080 
27851.784 
27863.548 
27990.982 
28031.264 

‘.I!$., are the vibrational energy levels calculated using the modified Jensen PES. 
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The vibrational energy levels of Hz0 exhibit normal 
mode patterns at low vibrational excitation, local mode 
patterns at intermediate excitation, and nonseparable pat- 
terns for very highly excited states. As the stretching vi- 
brations become more highly excited, the anharmonicity 
leading toward bond dissociation tends to dominate, and 
thus the local mode model becomes a more accurate de- 
scription of the molecular motions. Further excitation 
causes the molecule to explore wider scope of configuration 
space much more freely, and this results in extensive mix- 
ing of all vibrational modes. 

Simple model studies have illustrated the roles of an- 
harmonicity in O-H bond stretching and the coupling be- 
tween the two bonds in giving rise to normal or local mode 
characteristics in the energy level patterns.37’36’38 The in- 
terbond coupling of the local mode basis is directly related 
to the energy splitting of symmetric and antisymmetric 
normal mode states, and the larger the coupling between 
the bonds the more likely it becomes the normal mode 
pattern. The magnitude of the coupling was shown to be 
proportional to v=n+m, in which n and m denote the 
excitations in the two bond oscillators, respectively.33’36 

In terms of local mode basis, the anharmonicities in 
bond stretchings may also result in transition from local to 
normal modes. The anharmonicity constants are directly 
related to the interactions among the Darling-Dennison 

resonance pairs of normal modes. The Darling-Dennison 
couplings have dependence on yly3, in which v1 and v3 
denote the stretching quanta in symmetric and antisym- 
metric states. Recently, semiclassical dynamics has been 
used by Kellman and Xiao35 in conjunction with an alge- 
braic Darling-Dennison Hamiltonian to classify the 
stretching states of H20. They first showed that with this 
Hamiltonian the “polyad number,” n,+n, is conserved, 
but that within a polyad the states varied between normal 
mode and local mode type depending on the coupling in 
the DD Hamiltonian and the polyad number. In Tables 
VIII and IX, we have presented energy splittings of normal 
mode degenerate pairs whose linear combinations would 
correspond to the “degenerate” local mode states. 

Table VIII lists energy splittings, SE, as a function of 
stretching quanta v=v1+v3 for the v2=0 states of the two 
PES’s. SE is the difference between the energy level of an 
antisymmetric state and that of a symmetric state. Accord- 
ing to the simple model study,33,36 the energy splitting 
should decrease as the interbond coupling becomes smaller 
with an increase in v. This is clearly seen for [vl]*O local- 
mode pairs which correspond to linear combinations of 
(3,0,0)/( 2,0,1) series. On the other hand, the splittings of 
[YO]*O local-mode pairs which correspond to (O,O,v)/ 
( ~,O,Y-- 1) normal mode states do not decrease with in- 
creasing v, in contrast to the predictions of the simple 

TABLE VII. Antisymmetric vibrational energy levels of H,O calculated using the JN surface. Energies are 
given in cm - ‘. 

n ( %‘I. %‘2, 1’) 1 E&J a n (v,, vz, VA) &+” n (VI, ‘v2, 9) @iYa 

37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

:; 
69 
70 

(2 5 1) 17 903.163 
(0 0 5) 17 954.946 
(3 31) 18 260.957 
(1 81) 18 310.147 
(0 5 3) 18 370.804 
(2 1 3) 18 404.834 
(0 11 1) 18 713.289 
(1 33) 18 764.207 
(4 1 1) 18 996.401 
(2 61) 19 188.869 
(0 1 5) 19 449.279 
(1 9 1) 19 468.525 
(3 4 1) 19 667.215 
(0 6 3) 19 697.971 
(3 0 3) 19 757.318 
(2 2 3) 19 884.278 
(0 12 1) 20 126.335 
(1 43) 20 165.599 
(2 71) 20 416.144 
(4 21) 20 449.612 
(5 0 1) 20 542.215 
(1 10 1) 20 722.825 
(0 2 5) 20 910.656 
(0 7 3) 20 948.157 
(3 51) 21 025.820 
(1 05) 21 052.005 
(3 1 3) 21 205.830 
(2 3 3) 21 338.430 
(1 53) 21 498.838 
(2 8 1) 21 566.515 
(0 13 1) 21 622.958 
(4 31) 21 866.518 
(5 1 1) 22 022.667 
(1 11 1) 22 041.817 

71 (0 8 3) 22 111.389 105 
72 (3 6 1) 22 310.159 106 
73 (0 3 5) 22 340.821 107 
74 (2 0 5) 22 476.044 108 
75 ii i5j 22 526.050 
76 (3 2 3) 22 607.406 
77 (2 9 1) 22 693.738 

80 (0 14 ij 
81 (0 9 3) 
82 (4 41) 
83 (4 0 3) 
84 (1 12 1) 
85 (5 2 1) 
86 (3 7 1) 
87 (0 4 5) 
88 (2 i 5j 
89 (2 10 1) 
90 (1 25) 
91 (2 5 3) 
92 (6 01) 
93 (1 73) 
94 (3 3 3) 
95 (0 10 3) 
96 (0 0 7) 
97 (4 51) 

78 (2 4 3) 22 778.282 
79 (1 63) 22 837.776 

23 077.240 
23 190.458 
23 247.448 
23 386.165 
23 436.583 
23 485.043 
23 549.110 
23 734.752 
23 894.713 

98 io 15 ij 
99 (3 8 1) 

100 (4 1 3) 
101 (1 13 1) 
102 (5 3 1) 
103 (3 0 5) 
104 (0 5 5) 

23 922.581 
23 956.438 
23 993.497 
24 048.232 
24 055.476 
24 181.226 128 
24 348.582 129 
24 523.189 
24 553.864 
24 573.589 
24 699.001 
24 798.732 
24 909.753 
24 926.881 
25 035.096 
25 088.326 

109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 

130 
131 
132 
133 
134 
135 
136 

(1 8 3) 25 178.831 
(2 6 3) 25 247.851 
(2 11 1) 25 264.390 
(2 2 5) 25 340.591 
(1 35) 25 362.566 
(6 11) 25 503.460 
(3 4 3) 25 556.647 
(0 11 3) 25 589.743 
(4 61) 25 769.964 
(3 9 1) 25 890.737 
(0 1 7) 25 970.309 
(0 16 1) 26 064.072 
(5 0 3) 26 094.428 
(5 4 1) 26 169.392 
(1 93) 26 286.404 
(4 2 3) 26 343.727 
(1 14 1) 26 373.568 
(0 6 5) 26 407.137 
(3 1 5) 26 457.257 
(2 7 3) 26 488.247 
(2 12 1) 26 647.347 
(1 45) 26 697.662 
(2 3 5) 26 725.381 
(7 0 1) 26 864.243 
(0 12 3) 26 883.094 
(3 5 3) 26 910.126 
(6 2 1) 26 949.846 
(3 10 1) 27 003.018 
(4 71) 27 08 1.029 
(0 2 7) 27 373.767 
(6 0 3) 27 418.072 
(5 5 1) 27 433.300 

‘I& are the vibrational energy levels calculated using the modified Jensen PES. 
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model. Since the Darling-Dennison coupling is strongly 
related to the anharmonicity of the bond stretching, zero 
excitation in one of the bonds is enough to inhibit the 
mixing of vi and y3. 

Figure 2 is an energy diagram for Y= vi + yj = 2, 3, 4, 
5, and 6. It illustrates the effect of the Darling-Dennison 
interactions on mixing of normal mode states, which would 
result in local modes in the limit of maximum mixing. In 
this figure, the zero of energy is set to the lowest-energy 
level among states of the same Y. As Y increases, a coupling 
between ( Y,,O,Y~) and (vi f 2,0,9 r 2) becomes larger. 
For Y= 3, the (3,0,0) and ( 1,0,2) states are strongly cou- 
pled such that it is hard to distinguish between the two 
states simple by counting the number of nodes in each 
mode. Furthermore, the order of energy levels for (4,0,0) 
and (2,0,2) states are switched from that of perfect normal 
modes. The arrows in the figure show splittings of Darling- 
Dennison resonance pairs. Larger Darling-Dennison inter- 
action signifies smaller interbond coupling, which is typical 
of good local mode states. 

Using our wave functions we have also evaluated the 
expectation values of R2 and 3, from which the relative 
lengths of the two bonds are estimated. Namely, 

Although X, and X2 are not the expectation values of the 
individual bond lengths, the relative magnitude of Xi and 
X2 still give useful information regarding the assignments 
of local mode states among all states of the same Y. This is 
illustrated in Table X which contains X, and X2 values for 
~=3 and 5, which form relatively good local mode pairs. 
Schematic energy correlation diagrams of the normal and 
local mode limits are presented for ~=3 and 5 in Fig. 3. 
The center column of the figure corresponds to the calcu- 
lated energy levels of the states that belong to the indicated 
normal mode assignments. The magnitudes of DD inter- 
actions vary for different normal mode pairs, which result 
in energy level patterns of the true states being much more 
complicated than that expected of simple models.36 

The polyad states with the most local mode character 
are the (vi + 1 v2 0) and (vi v2 1) pairs.35 The effects of the 
bending mode, v2, on the degeneracy of these local mode 
pairs is shown in Table IX for Y=Y, +~s= 1, 3, and 5. 
These “local mode” energy splittings are plotted against 
the bending quanta in Fig. 4. Regardless of the fact that the 
average splittings for the three sets of Y states are quite 
different, their general pattern uniformly reflects an in- 
crease in the splitting as the energy in the bending coordi- 
nate approaches the barrier to the HUH linear configu- 
ration. The abrupt breaks in the plot, especially for the 
Y= 1 plot, are the result of Fermi resonances for the par- 
ticular states. Beyond the barrier to linearization, the bend- 
ing motion gradually becomes a free rotor which would 
inhibit the kinetic coupling between the bonds. The de- 

TABLE VIII. Local mode (n,n~)~ degeneracies as a function of stretching quanta for v,=O levels of H,O, 
in cm-‘. 

n m -%N AI? 6E ECH AE 6E 

0 1 3656.49 
2 7444.95 
3 10 869.33 
4 14 541.33 
5 17 754.54 
6 21 284.28 
7 24 309.38 
a 27 678.12 

1 0 3656.49 
1 1202.61 
2 10 602.77 
3 13 829.73 
4 16 899.51 
5 19 151.09 
6 22 416.99 
7 25 035.21 
a 27 418.70 

2 0 1444.95 
1 10 602.77 
2 14 223.50 
3 17 460.86 
4 20 532.29 
5 23 380.89 
6 26 091.41 

3656.49 
3788.46 
3424.38 
3672.00 
3213.21 
3529.74 
3025.10 
3369.34 

3656.49 
3546.18 
0602.11 
3226.95 
3069.18 
2857.58 
2719.90 
2558.22 
2383.49 

3788.46 
3157.82 
3620.13 
3237.36 
3071.43 
2848.60 
2716.58 

99.45 
- 194.00 

164.79 
-219.82 

200.41 
- 232.21 

213.86 
- 226.93 

99.45 

12.83 
2.32 
0.07 
0.24 

-0.91 
-0.01 
-0.36 

- 194.00 
12.83 

36.17 
9.93 
5.31 

-2.89 

3656.32 3656.32 
1442.63 3786.31 

10 856.92 3414.29 
14 531.71 3614.79 
17 717.69 3185.98 
21 260.63 3542.94 
24 233.57 2912.94 
21496.19 3263.22 

3656.32 3656.32 
7204.35 3548.03 

10 608.34 3404.01 
13 840.44 3232.09 
16 915.21 3074.78 
19 786.30 2871.09 
22 536.85 2750.54 
25 131.12 2594.28 
2-l 569.32 2438.20 

7442.63 
10 608.34 
14 210.38 
17 451.86 
20 522.86 
23 369.07 
26 137.21 

3165.71 
3602.04 
3241.48 
3070.99 
2846.2 1 
2768.20 

99.92 
- 193.82 

172.63 
- 230.43 

222.45 
-259.55 

255.82 

99.92 

a.41 
0.61 

-0.31 
-0.09 
-0.02 

0.02 
0.82 

- 193.82 
8.41 

22.91 
0.78 

-0.09 
-2.35 

“( n,m) denotes the local mode representation for the stretching quanta of the two equivalent O-H bonds. 
bAE=E(n,m)-E(n,m-l). 
‘6E represents the local mode degeneracy and is the difference in energies of (Y, - 1, v,+ 1) and (Y,, ~3) 
normal mode states. Here Y, +v,=n+m. 
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TABLE IX. Local mode degeneracies as a function of Q, bending quanta, for Y, +Y,= 1, 3, and 5 of H,O, 
in cm-‘. 

1’ 1’: EJN AF sl? ECH AE SE 

1 0 3656.485 
1 5234.285 
2 6775.021 
3 8273.243 
4 9719.763 
5 11 082.283 
6 12 504.089 
7 13 604.841 
a I4 778.301 
9 16 023.707 

10 17 312.440 
11 18 684.665 
12 20 126.492 
13 21 652.376 
14 23 168.743 
15 24 725.352 
16 26 233.960 
17 27 718.868 
la 29 364.827 

3 0 10 602.774 
1 12 144.462 
2 13 647.146 
3 15 109.671 
4 16 525.427 
5 17 877.874 
6 19 148.224 
7 20 377.122 
a 21 545.071 
9 22 743.593 

10 24 196.933 
11 25 488.321 
12 26 856.549 
13 28 160.137 
14 29 364.735 

5 0 17 460.859 
1 18 958.419 
2 20 428.273 
3 21 842.567 
4 23 210.006 
5 24 5 10.074 
6 25 729.910 
7 26 992.399 
a 28 101.247 
9 29 310.111 

1577.800 
1540.736 
1498.222 
1446.520 
1362.520 
1421.806 
1100.752 
1173.460 
1245.406 
1288.733 
1372.225 
1441.827 
1525.884 
1516.367 
1556.609 
1508.608 
1484.908 
1645.959 

1541.688 
1503.284 
1461.925 
1415.756 
1352.447 
1270.350 
1228.898 
1167.949 
I 198.520 
1453.340 
1291.388 
1368.228 
1303.588 
1204.598 

1497.561 
1469.854 
1414.294 
1367.439 
13ccl.068 
1219.836 
1262.489 
l loa. 
1208.864 

99.45 
97.78 
98.45 

102.41 
112.84 
152.94 
62.98 

194.41 
154.44 
84.52 
62.41 
28.62 

-0.16 
- 29.42 
-91.50 

- 151.76 
- 169.89 
- 169.99 

3656.321 
5234.458 
6771.972 
8266.479 
9711.738 

11 087.290 
12 458.406 
13 625.417 
14 760.300 
15 948.181 
17 207.477 
18 561.372 
19 994.520 
21 476.177 
22 863.550 
24 312.492 

12.83 
12.07 
10.98 
12.92 
15.16 
25.29 
40.64 
39.02 
21.44 

-49.85 
- 274.34 
-223.92 
- 209.20 
-318.27 

10 608.342 
12 147.001 
13 641.528 
15 097.335 
16 511.603 
17 877.297 
19 180.484 
204la.ll3 
21 562.952 
22 608.596 
23 745.501 
24 976.182 
26 291.103 
27 643.818 
29 056.196 

36.17 17 451.862 
37.98 la 938.830 
21.34 20 386.582 
23.95 21 793.447 
37.44 23 163.229 
43.79 24 492.690 
40.05 25 780.665 
88.63 26 999.954 
71.85 28 148.730 

1578.137 
1537.514 
1494.507 
1445.259 
1375.552 
1371.116 
1167.011 
1134.883 
lla7.8al 
1259.296 
1353.895 
1433.148 
1481.657 
1387.373 
1448.942 

1538.658 
1494.527 
1455.807 
1414.268 
1365.694 
1303.551 
1237.265 
1144.839 
1045.644 
1136.905 
1230.681 
1314.921 
1352.715 
1412.378 

1486.968 
1447.752 
1406.865 
1369.782 
1329.46 1 
1287.975 
1219.289 
1148.776 

99.92 
98.08 

100.61 
106.85 
117.68 
144.81 
107.40 
175.93 
171.76 
126.5 1 
116.45 
109.97 
95.95 
71.64 

167.86 
177.07 

8.41 
6.92 
6.64 
1.56 
9.74 

14.21 
23.81 
30.11 
35.03 
47.75 
23.88 

9.53 
3.30 

22.97 
22.19 
12.87 
14.32 
14.11 
22.35 
21.59 
33.42 
39.03 

‘AE=E(n,m)-E(n,m-1). 
b6E represents the local mode degeneracy and is the difference in energies of (Y, - 1, v2, v, + 1) and (Y,, v,, 
1’)) normal mode states. Here, v, +y=n+m= 1, 3, and 5. 

crease in energy splittings between the local mode pairs is ergy all vibrational degrees of freedom are strongly cou- 
observed for intermediate levels. For very highly excited pled, and neither the normal modes nor the local modes 
bending states, the extensive mixing between Y, and ‘v2 are a good description for the molecular vibrations. 
interrupts the local mode degeneracies. At very high en- Evidence of a clear transition from normal mode to 
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FIG. 2. The energy diagram of Y=Y, +~~=2, 3, 4, 5, and 6 states (with 
V~ =O) , illustrates the effects of the Darling-Dennison (DD) interactions. 
As Y increases, the DD interaction results in a stronger mixing of normal 
mode states and gives rise to states that are better represented by local 
mode descriptions. The zeros of energies in the diagram are set to the 
lowest energy level for the given Y. 

local mode is shown in Fig. 5. Plotted in Fig. 5(a) are the 
energy spacings for progressions of (~,0,0), (y--2,0,2), 
and (v-4,0,4) stretching states as a function of Y. For 
states which are well represented in terms of normal 
modes, the energy spacings should gradually decrease with 
Y. However, if the states are strongly coupled due to reso- 
nances rather irregular patterns may be expected which is 
clearly the case for (Y,O,O) progression. Likewise, Fig. 
5(b) presents the energy spacings for progressions of 
[nO]+O, [n - 1 l]+O, and [n - 2 2]+0 local mode states. For 
the m= 1 progression, a gradual decrease in energy spac- 
ings reveals a simple anharmonicity in the local mode co- 
ordinate for those states. This results from a strong DD 
interaction between the corresponding normal mode pair. 
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FIG. 3. Schematic energy correlation diagrams of the normal and local 
mode limits for v=3 and 5. The center column is the calculated energy 
levels, assigned according to the normal mode descriptions. As a result of 
the unequal magnitudes of DD interactions for different normal mode 
pairs, the correlations between the two limiting representations are dif- 
ferent from what is expected from a simple model. The zeros of energies 
are set to the lowest energy levels of the calculated values for the given Y 
states. 

TABLE X. Relative O-H bond lengths, X, and X,, evaluated from (R’) and (2) for v=3 and 5 states of v,=O. 

Jensen Carter and Handy 

(V,,VJ) EJN (Cm-‘) x, (A) x2 6) ECH (Cm-‘) x, (A) 

(3,O) 10 602.774 1.10 0.92 10 608.343 1.10 
(2, 1) 10 615.601 0.91 1.11 10 616.752 0.9 1 
(192) 10 869.326 1.10 0.92 10 856.923 1.10 
(0, 3) 11034.111 0.88 1.13 11029.553 0.88 

(3,2) 16 899.508 1.18 0.9 1 16 915.214 1.19 
(2.3) 16 899.580 0.9 1 1.18 16 914.907 0.91 
(5,O) 17 460.858 1.15 0.94 17 451.862 1.15 
(4, 1) 17 497.030 0.92 1.17 17 474.828 0.92 
(L4) 17 754.533 1.17 0.92 17 717.691 1.17 
10. 5) 17 954.946 0.88 1.19 17 940.137 0.92 

x2 6) 

0.92 
1.11 

0.92 
1.13 

0.9 1 
1.19 
0.95 
1.17 
0.92 

1.17 
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FIG, 4. For three different classes of ( Y,VJ) states, the energy splittings of 
local-mode pairs are plotted as a function of bending quanta, v2. The plot 
of ( Iv~O//(OV~I) states shows a smooth increase in energy splittings with 
an abrupt discontinuity at vz=6; the energy splitting, then, starts to de- 
crease monotonically from vz=7. 

C. Separability of normal modes 

The presence of resonances or local mode degeneracies 
can most easily be demonstrated in term of separabilities of 
vibrational modes. States that have Fermi resonances 
should exhibit coupled stretching and bending modes, 
whereas the Darling-Dennison interaction will result in 
mixing of symmetric and antisymmetric stretching coordi- 
nates. The separability of vibrational modes can be system- 
atically evaluated using the natural orbital expansion 
(NE) analysis of the wave functions.3g4’ Since the sym- 
metrized Radau coordinates exhibit close resemblance to 
normal modes, we have analyzed the separabilities of mo- 
tions in (R,8,r) which are assumed to implying the sepa- 
rabilities of (59~~~~) normal modes. A detailed description 
of NE analysis is given in Appendix B. 

The natural expansion analysis for a three-dimensional 
system involves re-expanding a wave function in terms of a 
direct product basis consisting of functions of one coordi- 
nate times functions of the other two coordinates. Thus, for 
systems involving three modes, separability of each mode 
from the remaining two is evaluated. The NE analysis 
gives the most rapidly convergent set of basis function of 
this form for each state analyzed. In NE analysis, the mode 
mixing is quantified in terms of the population probability 
coefficients, Cd:), of the dominant configurations. As a 
measure, we define the “entropy of mixing,” S, as the fol- 
lowing for each vibrational state and each coordinate: 

s= 2 -di In di. 
9 

(20) 

Therefore, if there exists only one dominant configuration, 
then d: = 1, giving S=O. This will correspond to a case in 
which the coordinate is perfectly separated from the other 
two. 
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FIG. 5. (a) The three plots are the energy level spacings, AE, of sym- 
metric stretching progressions for v3=0, 2, and 4 states, respectively, 
shown as a function of Y. Each plot is indicated by its normal mode 
assignment, the first point corresponds to the energy difference between 
the ( 10~~) and (00~~) levels. The smooth decreases in AE due to anhar- 
monicit ies in the symmetr ic stretch mode are only evident for low Y states. 
As Y increases, the normal mode description is not suitable. (b) The three 
plots are the energy-level spacings, AE, of progressions in a single O-H 
bond for m=O, 1, and 2 states, respectively, shown as a function of total 
bond stretching quanta, v=n+m. Local mode assignment, [n,m]+O, is 
given for each plot in which the first point corresponds to the energy 
difference between the [I,m]+O and [O,m]+O levels. For the m=O pro- 
gression, the local mode description is not suitable even for high Y states. 
On the contrary, a simple anharmonicity in the local mode coordinate is 
seen in the [al]+0 progression. 

The effect of mode mixings on the local mode degen- 
eracies is presented in Fig. 6  in terms of the entropies of the 
mode separabilities. Plotted in Figs. 6(a) and 6(b) are 
[no]*0 and [nl]*O local mode pairs, respectively. Solid 
lines indicate the symmetric states, and dotted lines are 
used for the antisymmetric states. Three different symbols 
denote the separabilities of R from (8,r): 0, 8  from ( RJ): 
l , and r from (R,O) : H, respectively. Figure 6(a) and 6(b) 
clearly exhibit different patterns. The entropies of mixing 
for [nl]*O pairs demostrate close similiarity in character- 
istics of the symmetric and antisymmetric vibrational 
states and thus represent much better local mode degener- 
acies. In Fig. 6(b), as n is increased Darling-Dennison 
interactions become larger which result in strong mixing of 
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FIG. 6. (a) The entropies of mixings are plotted for local mode pairs, 
[n,O]*O, for n ranging from 0 to 7, as a function of the vibrational energy 
levels. The solid lines and the dot-dashed lines specify the + and - linear 
combinations of the local mode states, respectively. Different symbols are 
used to denote the mixings of different vibrational coordinates, R/( e,r) [ 
1, W(R,r)[ 1, and r/(R,@)][ 1. respectively. (b) The entropies of mixings 
are plotted for local mode pairs, [n,l]*O; otherwise, the same as (a). 

R and r to form local mode pairs. The entropy of mixing 
for the bend is the largest at n = 5, and the mixing of 8 with 
the stretching coordinates diminishes as the local mode 
degeneracies improve. 

Figure 6 (a), however, exhibits a very different pattern. 
The plots clearly indicate that the [no] “0 local mode states 
do not constitute good degenerate pairs. Even though mix- 
ing of R and r coordinates predominates as was in the case 
for [nl]*O states, the patterns of symmetric and antisym- 
metric states do not correlate, and therefore the mixing 
does not correspond to formation of local mode pairs. In 
addition, mixing of the bending coordinate with the 
stretches overall increases with Y. 

Using the same symbols, Figs. 7(a) and 7(b) show the 
entropies of mixing for (~~00) and (00~~) normal-mode 
states, respectively. y1 and v3 range from 1 to 8. The pat- 
terns of the separability of 8 from (R,r) are quite different 
between the two figures. As the excitation in it increases, 
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FIG. 7. The entropies of mixings are plotted as a function of vibrational 
energy levels for (~~00) and (00~s) states. As vi increases, mixing of the 
R and 6 coordinates becomes stronger, diminishing the mixing of R and 
r. The 0 coordinate is well separable even for highly excited v, states. 

so does the coupling of the bending with the stretches. On 
the contrary, the bends are quite separable from the 
stretching coordinates even for highly excited v3 states. 
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FIG. 8. An overlap of the entropies of mixing of the 0 coordinate is 
presented for various sets of states as a function of energy levels. Each plot 
corresponds to the 6 coordinate a specific (v,,vs) state as vz progresses. 
(Ov,O):n; (Iv,O):Q (2v,O):A; (3vrO):O; (2y2):O; (3v22):+; and 
(2v,4):+. The arrows indicate states whose entropies of mixing are en- 
henced by accidental resonances. 
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FIG. 9. For Y, = 0, 1,2, and 3 (and v, =0), the energy level spacings, AE, 
between vz and q- 1 states are plotted as a function of vs. (a) and (b) 
correspond to the energies calculated from the modified JN and CH 
PESs, respectively. Overall, for both PES’s the level spacings monoton- 
ically decrease up to v,=9, beyond which increases in spacings are evi- 
dent. An accidental resonance, such as (090) and (160) states, clearly 
disrupts the smooth pattern of energy levels. Sharper changes of the levels 
spacings are shown for higher V, states of the CH PES. 

This, in turn, results in stronger coupling between the sym- 
metric and antisymmetric stretches for excitation in v3. 

Finally, the separability of 8 for bending progressions 
of different stretching states are plotted as a function of 
their energy levels in Fig. 8. The arrows indicate states 
whose entropies of mixing are enhanced due to Fermi res- 
onances. The overall pattern of the entropies for the mixing 
of 6 coordinate is increasing exponentially. 

D. Fermi resonances 

In H20, the fundamental frequencies of symmetric 
stretching, $#I, and bending, v2, are 3657 cm-’ and 1595 
cm-’ which are near to a 1:2 resonance. Because of the 
relatively low energy barrier to linearization for H-O-H 
configurations, which is - 12 500 cm- ’ for the O-H bond 
length near its equilibrium, the PES is extremely anhar- 
manic in 8, and the energy spacings decrease to - 1100 
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FIG. 10. The energy level spacings of bending progressions, O<v& 16, are 
plotted for (Ov,O):O; (lv,O):O; and (Ov21):tZ states from JN and CH 
PES’s. 

cm-’ between v2=8 and 9. Around this energy level, the 
resonance between the stretch and the bend is closer to 1:3. 
As the excitation in the bend increases even further above 
the energy of the barrier, the spacings of bending energy 
levels start to increase, corresponding to a more free rotor- 
type motion as an H atom orbits around the center of mass 
of O-H. These large changes in the bend frequency cause 
complicated resonance patterns throughout the energy lev- 
els. 

The spacing of energy levels, AE, of bending progres- 
sions for (Y,Y~O) normal mode states with O<Y,<~ are 
plotted as a function of v2 in Fig. 9. Monotonic decreases in 
energy spacings are clearly evident up to v2= 9 for most 
stretching states. For y> 9 AE gradually increases. A 
comparison between the plots from JN’s and CH’s surface 
shows that the general patterns of the 6E curves are quite 
similiar. The main difference is in the smoother increase of 
AE about v2=9 for higher excited stretching states from 
the CH surface. The irregularities in the pattern are more 
distinct for the excited va states of JN’s surface, which 
imply more extensive mixing of the mode. The abrupt 
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FIG. 11. The entropies of mixing of the 0 coordinate are plotted for the 
bending (O<v2( 16) progressions of (Ov20), ( lvzO), and (0~~1) states for 
JN and CH PES’s. 

breaks in the AE curves occur most evidently at (090) and 
(160) for both surfaces. 

AEs of the bending progressions of (OY~O), ( lvzO), 
and (0~~1) are plotted in Fig. 10 as a function of total 
vibrational energy. In this figure, one can clearly see that 
the Fermi resonance between the (090) and (160) states 
causes a strong interaction, creating an irregular spacing in 
their energies. The (0~~1) plot does not reveal any unusual 
pattern due to resonances. 

For the same set of states as in Fig. 10, the entropic 
measures for the separabilities of the bending, 8, coordi- 
nate from the stretching coordinates (R,r), are plotted in 
Fig. 11. Abrupt increases in the entropy of the 13 mixing is 
evident for the (090) and (160) states. This is due to the 
1:3 Fermi resonance between the stretch and the bend. The 
mixing becomes more intense as the vibrational energy in- 
creases. For (0~~1) states, the mixing of a bending mode 
occurs at much slower rate than the (1~~0) states. 

The plots of Fig. 12 are the entropic measures for the 
separabilities of all modes for (Y~Y~Y~) = (Ov,O>, (3~~0), 
and (0~~3) states of the JN and CH surfaces. The three 
plots of each column illustrate quite specific effects. The 
(0~~0) states show the effect of the Fermi resonance near 

(090) but the antisymmetric stretch coordinate is well sep- 
arated from (R,(3). The (3~~0) series starts with strong 
(R,r) coupling due to local modes, and then shows increas- 
ing (0, R) mixing with vz. Finally, the (0~~3) sequence 
shows quite low mixing of all modes until an energy above 
25 000 cm-’ is attained. These sequences indicate that in 
HZ0 (on the modified JN surface at least), the mode mix- 
ing is very specific and that some states remain quite sep- 
arable to very high vibrational energies. 

E. Statistical studies on the vibrational energy levels 

The energy level spacing distribution has been consid- 
ered as a positive test for the manifestation of classical 
chaos in quanta1 systems. In theory, the level spacing dis- 
tribution of a quanta1 system gradually changes from a 
Poisson type to a Wigner type as the system becomes more 
fully “chaotic.” Chaotic behavior of a classical system may 
be identified with extensive mixing among all the nuclear 
degrees of freedom. In general, this will lead quantum me- 
chanically to level “repulsion” and a more uniform pattern 
of energy level spacings. Chaotic nodal structures of the 
wave functions are also considered as means of identifying 
“quantum chaos.” 

Earlier we discussed specific types of resonance effects 
that may result in coupling between vibrational states. Due 
to the complicated interactions among highly excited lev- 
els, we could only give the representative examples for 
different types of resonances. The statistical studies of en- 
ergy level spacings including all energy levels, however, are 
simple to present and conceptually easy to interpret for the 
global characteristics of the molecular vibrational levels. 

In Fig. 13 we plot the histogram of the locally average 
level spacing, he,, where 

AE,+s,,+,-E, (214 

E n+l -En 
=(=+I) Eb-Ea , (21b) 

in which Ei denotes the ith energy level, and 2L+ 1 the 
number of levels included in the local average, b=n +L, 
and a = n -L. We have evaluated the averaging for L rang- 
ing between 3 and 15. The statistical behavior stabilizes for 
5<L<9. We also checked for the effects of the bin size, S, 
of the histogram on the distribution. For 8~0.05 the sta- 
tistical distribution was not affected by it. 

The histograms in Fig. 13 are evaluated for L = 5 and 
S=O.O5 for the two PES’s. There are obvious differences 
between the two plots. The second moments of the distri- 
butions for the two surfaces are 1.4 and 1.7 for JN’s and 
CH’s, respectively. Thus, the CH surface produces a dis- 
tribution much nearer the Poisson type (~z= 2.00) which is 
characteristic of separable systems. For both surfaces, the 
statistical distributions show a slow decrease in the second 
moment as the studies include states of increasing energy. 
For both surfaces, the energy level spacing distributions 
were analyzed as the maximum energy level was incremen- 
tally increased from 20 000 to 37 000 cm-’ above the zero- 
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FIG. 12. Separabilities of the three vibrational modes are presented. The entropies of mixing for R/(Bw):O; B/(R*r):m; and r/(R*Q): 0 are 
overlapped for bending progressions of (O,V~,O), (3,v*,O), and (0,v2,3) stretching states. The characteristics of states of the JN and CH PES’s may be 
compared. 

point energy. The second moments ranged from 1.53 to 
1.45 for the JN surface, and ranged from 1.72 to 1.63 for 
the CH surface for symmetric vibrational states. The ap- 
parent patterns of distributions do not change much over a 
wide range of energy levels. 

The entropic analysis of the natural orbital expansion 
analysis for all symmetric states is presented in Fig. 14. 
Although the mixing increases, as expected, with energy 
for all coordinate separations, both JN and CH surfaces 

show interesting behavior with respect to the antisymmet- 
ric stretch separation. Note that a set of states remains 
almost completely separable (S < 0.25) up to over 20 000 
cm-’ and a second set of states show only local mode 
mixing (S-ln 2 =0.69) up to comparable energy. These 
separable sets which are most pronounced for the antisym- 
metric stretch coordinate, r, persist to higher energy for the 
CH surface. 

Finally, we may comment that H,O is an interesting 
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sult from extensive mixing among zeroth-order modes. The 
DVR approach offers a powerful means of computing ac- 
curate energy levels in a wide energy range, while retaining 
a simple physical picture of the dynamics of molecules 
even in highly excited states. 

HZ0 has been one of the most widely studied molecule, 
both theoretically and experimentally. The rovibrational 
spectra of the highly excited stretching states with low 
bend excitations have revealed patterns of normal to local 
mode transitions as well as Fermi resonance interactions. 
Theoretically, reduced dimensional studies of classical dy- 
namics have predicted transitions to chaos at highly ex- 
cited vibrational states due to overlaps of various reso- 
nances. At the beginning of our study, we anticipated that 
we would be able to characterize the intriguing aspects of 
the intramolecular dynamics of the water molecule in some 
relatively straightforward fashion as a function of the vi- 
brational energy. As indicated by the analyses above, how- 
ever, different vibrational states of H,O exhibit character- 
istics of different zero-order decomposit ions over a wide 
range of energy. 

(Carter&Handy’s PES) 
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FIG. 13. Histograms of the locally averaged nearest-neighbor energy level 
spacing distributions for symmetr ic and antisymmetric vibrational states 
computed from the JN and CH PES’s. The second moments D of the 
histograms are given, and the Poisson and Wigner distributions are over- 
lapped. 

molecule, if very difficult one to make generalizations 
about. Although local modes do exist in a given energy 
regime, there is no distinct “local mode transition,” and 
local and normal mode type states coexist in a reasonable 
energy range. Numerous specific interactions occur, but 
separability of some antisymmetric stretch states persists to 
very high energy. Finally, the energy level spacing distri- 
butions merely creep toward the W igner distribution as the 
energy range increases. 

In the near future we will present a summary of results 
for H,O in rotational states up to J< 15, in which effects of 
rotation on mixing are examined. 

V. CONCLUSION 

We  have examined the dynamical characteristics of vi- 
brationally highly excited (floppy) HZ0 using DVR. Since 
the nature of energy flow within polyatomic molecules is 
an important factor controlling chemical kinetics, such 
claculations are of interest to many different areas of chem- 
ical physics. Anomalous patterns of spectra frequently re- 

Although local modes do exist over a wide energy 
range, there are, for each polyad, as pointed out by Kell- 
man and Xiou,35 states which have dominant normal mode 
character. In addition, the adequacy of the normal mode/ 
local mode characterization is rather strongly dependent 
on the bending quantum number, v2 The degree of local- 
mode degeneracy is found to be strongly dependent on the 
extent of mixing between vi and vz (or v3 and v2) rather 
than on the vibrational energy alone. In particular, the 
natural orbital analysis and the degeneracies (or lack 
thereof) between symmetric and antisymmetric states in- 
dicate that local and normal mode type states coexist in a 
reasonable energy range. One has, in fact, “interpenetrat- 
ing lattices” of local mode, normal mode, and very mixed 
type states above about 15 Ooo cm- ’ for both the Carter- 
Handy surface and the Jensen surface. The basic charac- 
teristics of the normal to local mode transtions are the 
same for the two different PES’s that are analyzed. 

The entropies of mixing, evaluted from the natural or- 
bital analysis, are a measure of vibrational mode couplings. 
These measures depend only on the coordinate system used 
(normal mode type), but not on the basis sets. The entropy 
is most sensitively dependent on the vibrational quanta in 
the v2 mode. Even though numerous specific interactions 
(spectroscopic perturbations such as Fermi resonances and 
Darling-Dennison interactions) occur throughout the en- 
ergy range, the separability of some antisymmetric stretch 
states persists to very high energy. These states undoubt- 
edly correspond to low bend states. 

Finally, a  statistical analysis of the energy level spacing 
distributions shows merely a mild inclination toward the 
characteristics of the W igner distribution as the energy 
range increases. However, it does reveal surprisingly dif- 
ferent dynamical characteristics for the two PES’s, with 
the Jensen surface exhibiting stronger chaotic tendencies as 
compared to the Carter-Handy surface. 

In contrast to simple analytical model studies or re- 
duced dimensional classical dynamics, our study has 
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FIG. 14. The entropies of mixing for R/( Ck), O/(&r), and r/(R&) are presented for all symmetric states as a function of vibrational energy in 
separate plots. 

shown that there is no clear energy dependence to local 
mode transition or the onset to chaotic behavior of energy 
levels. We have not been able to make any generalization as 
regards to the effect of overlapping resonances on the in- 
tramolecular dynamics. 

ACKNOWLEDGMENTS 
We gratefully acknowledge the support of this research 

by a grant from the National Science Foundation, No. 
NSF WE-88065 14. 

APPENDIX A: BASIS FUNCTIONS 

In this appendix we give the exact definitions of basis 
functions and DVR’s which we use.42 

1. Chebyshev functions 

A normalized Chebyshev (first kind) polynomial of 
order 1 is generally defined by 

Fr(q) =Ap2os(larccos q), MI) 

J. Chem. Phys., Vol. 97, No. 10, 15 November 1992 Downloaded 16 Aug 2003 to 128.135.132.83. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



mRF_t.DmF.tT (A121 

7052 S. E. Choi and J. C. Light: Vibrational eigenstates of triatomic molecules 

where qe[ - 1 , 11. Defining q = cos 4, AR = Rf+ Ri and scal- 
ing according to and 

(R--R,) 
I$=,, ‘Ii- (A21 

for RE[R,Rf], the Chebyshev basis functions (FBR) are 
given by 

F&R) =AI*cos(l$), (A31 

where 

DVRFata= f (R,) G&t, . (A13) 

Since the Gaussian quadrature is exact for the coordinate 
R, the orthogonal transformation matrics t diagonalize the 
FBR matrix of R, mRR. 

2. Harmonic functions 

A/= J(2--6B)/(Rf-Ri). 

The orthonormality condition is satisfied 

t-44) 

s/t*= 
s 

Rf 
Flt(R)*3-,(R)dR, (AS) 

Ri 

The harmonic oscillator functions can be defined by 
the self-adjoint form of the second-order differential equa- 
tion for Her-mite polynomials times the Gaussian weight 
function. The equation for the harmonic oscillator func- 
tions is 

and the kinetic energy operator is diagonal in the Cheby- 
shev basis: 

a2sq R) 
- -RdP-rUU aR2 - (‘46) 

for 

The variable q of the function is appropriately scaled to 
r,q=@. The kinetic energy matrix element in the FBR is 
then 

t-47) 

For an NR function basis, the DVR-FBR transforma- 
tion can be formed by diagonalization of the matrix repre- 
sentation of the coordinate R in the FBR.‘7P’5716 The eigen- 
values are the Gauss-Chebyshev quadrature points, R,, 
and the orthonormal transformation matrices can be writ- 
ten using the Gaussian weights o, as 

Ga= &AWL), (A81 

where 

R,=Ri+(a--f)*SR, 

oa=SR, 

6R= (Rf-Ri)/NR e 

The DVR basis functions are 

NR 
I?,(R)= c trcTdR). (A101 

I 

The approximations that coordinate functions are di- 
agonal in the DVR is equivalent to evaluation of the DVR 
matrix elements by the NR-point Gaussian quadrature. The 
relation is shown by evaluating a matrix element of a func- 
tion, {F[(R)}, in the FBR: 

FBRFpI' 
s 

Rf 
F/t(R).f(R).F,(R)dR 

Ri 

-$, w,.~,(R,).~(R,).~,(R.) 

= c +a*f (R,) *tl, . 
a 

Therefore, 

(All) 

(A14) 

&“j(r)dr=‘dj.Sjrj-Pjrj, 

(Al51 

where 

rdj=5.2(j+i), (A16a) 

Pjtj’ 
s 

m Xy(r)*e?*&C;.(r)dr 
-02 

for the orthonormal set of functions in r, 

(A16b) 

i- m Zjt(r)*Zj(r)dr=Sjrj. (A171 
J-co 

Again, the DVR points and transformation can be ob- 
tained as eigenvalues and eigenvectors of the coordinate 
matrix, gr, 

The DVR basis is 

FBRr.f=t.DVR r(diag). (A18) 

N, 
Qp(r) = 2 tjp.&"i(r). 

i 
(A191 

For a basis of even or odd symmetry, the harmonic 
DVR basis is symmetrized: 

(g)@fj(r) =-& [@g(r) f (- l)q*fjt(r) I, (A201 

where q= 0, 1 for even or odd symmetry and p’ = N,-fl 
+l for 0=1,2,...,N,J2. From the definition of the trans- 
formation matrices in Eq. (8b), we see that 

for j= even, 

for j=odd. (A21) 

Therefore the transformation from even (or odd) FBR 
basis functions to even (or odd) DVR functions can be 
formed as 

J. Chem. Phys., Vol. 97, No. 10, 15 November 1992 

Downloaded 16 Aug 2003 to 128.135.132.83. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



S. E. Choi and J. C. Light: Vibrational eigenstates of triatomic molecules 7053 

tive potential singularities in Eq. (3)) and (ii) satisfaction 
of appropriate boundary conditions at 8=0, rr. 

The l/cos2(8/2) term in the effective potential p(x) 
can partially cancel out the same term in Eq. (3). If b = k, 
a complete cancellation would result. If b=O and k=O, no 

C-422) 
singularity arises from l/cos2( e/2). As mentioned earlier, 
however, for k#O but even, the parameter b of the poly- 
nomials must be zero in order to allow (correctly) ampli- 

(A23) tudes of wave functions at t!3=p, and the singularity is not 
fully eliminated. In our computation of {q:} for even k’s, 
b=O is used for Jacobi polynomials. By setting a#O, 8, 
> 0, the effects of the singularity due to l/sin2(8/2) is 
completely eliminated. (g)@fl(r) =VT 1 tjflj(r), 

i=(q) 
(~24) 

i.e. we have 

restricted to the functions (q) =even or odd for (g) =S or 
A, respectively. 

Since the kinetic energy operator in r does not couple 
basis functions of different symmetries, the K’ matrix eval- 
uated in {(s’@P} will have a block-diagonal form separated 
by symmetry of the basis, which consists of elements de- 
termined by 

(B)K’ p,B= C C t~,8”L~,j’t~~ 
J’=(q) j=(q) 

(A25a) 

j:q, t&*‘dj*tJp -e$*Spp 
I 

(A25b) 

in which the orthogonality of the DVR basis functions has 
been applied. The @)K’-matrix elements are summed over 
either even or odd manifolds of functions 

3. Jacobi polynomials 

The kinetic energy matix in 8 is evaluated using the 
Jacobi polynomials defined according to the self-adjoint 
form of the second-order differential equation, 

= edi.6i,i+ ‘Pi,i , 

where 

(A261 

edi=i(i+a+b+ 1) + 
(a+b+ab) + (a2+b2) 

2 4 ’ 
(A27a) 

“P;,,, o”41P.b’(x).p(x).dl”b’(X)dx, 
s 

(A27b) 

a2 b2 
4sin2(8/2)+4cos2(8/2) ’ 1 (A27c) 

and for which 

s 
ff4c~p’b’(x).dl”‘b’(~)dx=Si,i 

0 
(A281 

defines the orthonormality of the functions. The parame- 
ters a and b may be chosen to optimize the basis for a given 
problem based on (i) cancellation, full or partial, of effec- 

The unitary transformation of Le to the DVR is ob- 
tained by diagonalization of cos 8 and yields the kinetic- 
energy operator in the DVR: 

K~,v= C f~y,.L~i.t~ 
i’,i 

(A29a) 

= [ C t$k%] -p(Xy) ‘Syty, 
i 

applying the orthogonality of the DVR basis functions. 
According to Eq. (3)) a first-order derivative in 0 ap- 

pears in Sktk+, block of Hamiltonian. We use the recur- 
rence relation to evaluate it: 

~dj..b)(x)=-sine~dl’b)(x) 

=g’(x> yyqx) +gyx) .Jq’)(x), 
(A30) 

where 

g’(x) = 
[asin(8/2)-bcos(e/2)] 

sin 8 
[[a-b-(2i+a+b)cos tl] - 

(2i+a+b)*sin 8 ’ 
(A31a) 

(2i+a+b+l) i(i+a+b) 1 1’2 
(2i+a+b-1) (i+a)(i+b) 

2(i+a) (i+b) 

’ (2i+a+b)*sin 8’ 
(A31b) 

The corresponding DVR matrix is again obtained by or- 
thogonal transformation. The kinetic-energy matrix in the 
FBR, LR, is diagonal, 

R Rf 
LIv= R, s, 

-avl(R) 
FP(R) * aR2 dR=Rd,.S,t,, (A32) 

from which the KR matrix of Eq. (14a) is evaluated using 
the transformation matrix defined in Eq. ( 13). 

KR=(fR)T.LR.fR. (A33) 
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APPENDIX B: NATURAL EXPANSION ANALYSIS 

The natural expansion (NE) analysis provides a 
method for evaluating mode separability in a given coor- 
dinate system of multimode vibrational wave func- 
tions.39-41 Separability of a particular mode from all the 
other modes is analyzed from the wave function of a given 
eigenstate. According to Eq. ( 16) in Sec. (II C), an eigen- 
vector of the 3D Hamiltonian in DVR may be written as 

Y (R,f%r) = c Gpy.xaBu(R,W, 
a& 

in which {C,,,) are the expansion coefficients, and {xapr} 
are the direct product basis given in Eq. (7)) 

XaBr(R,r,B) =T,(R).~B(r).O~b’(~). 

In order to evaluate mixing of the R coordinate with 
the (e,r) coordinates, the natural expansion of the eigen- 
function given by 

Y[R,(B,r)] = 2 d$;b(R)-G,(&r) 
P 

U32) 

is obtained as follows. Since the G are orthonormal over 
(O,r), the density kernel 9 for the coordinate R is defined 
for a given state is given by 

Y(R,R’) = c A,,,r:(R’)*r,t(R) 
a,a’ 

(B34 

= c d~W’W,W, 
4 

Wb) 

in which the matrix A has been diagonalized to find eigen- 
values, Cd:}, and {F,} are the optimized natural basis in 
the R coordinate for the specific vibrational state. A,,1 is 
defined in terms of the DVR expansion coefficients: 

&a = c c C,,; %py . (B4) 
B Y 

From the equality between Eqs. (B3a) and (B3b), it can 
be deduced that 

A,t,= 1 Q&‘qa,*d; 
4 

and 

035) 

F,(R) = 2 D,&(R). (336) 

{F,} natural irbitals are the linear combination of DVR 
basis. Thus, Cd;) are the eigenvalues of the matrix A, de- 
noting the population probabilities for dominant configu- 
rations. Since A is a unitary matrix, Eq{di}= 1. dl > l/2 
implies an existence of one dominant configuration, and as 
d, -, 1 the R coordinate is completely uncoupled from the 
other two modes. 
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