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Discrete variable representations (DVR’s) have been
widely used in chemical physics, in theoretical spectroscopy,
quantum dynamics, and other areas. In this article we review
the general types of DVR’s, their definitions and properties,
and their relation to some other pointwise coordinate repre-
sentations. In addition we discuss the accuracy and efficiency
of DVR’s for multi- dimensional problems of quantum dynam-
ics of small systems and indicate the most common modes of
utilization.

I. INTRODUCTION AND HISTORY
A. Scope

The title of this article, Discrete Variable Representa-
tions or DVR’s, suggests an oxymoron: spatial coordi-
nate variables are not discrete, and, if discrete values are
used, are not exact representations. A better description
would be: a DVR is a representation whose associated
basis functions are localized about discrete values of the
variables. The name DVR also implies the use of an ap-
proximation: coordinate operators are assumed diagonal
in this representation and are approximated by their val-
ues at the DVR points. DVR’s have enjoyed great suc-
cess as highly accurate representations for the solution
of a variety of problems in molecular vibration-rotation
spectroscopy and molecular quantum dynamics.

DVR’s are highly advantageous for most of these prob-
lems for two reasons. First, they greatly simplify the eval-
uation of the Hamiltonian matrix: kinetic energy matrix
elements are calculated simply, and potential matrix el-
ements are merely the value of the potential at the DVR
points, (i.e. no integral evaluations are required). Sec-
ond, for direct product DVR’s in multi-dimensional sys-
tems, the Hamiltonian is sparse and the operation of the
Hamiltonian on a vector is always fast. DVR’s provide
simple and well defined representations which permit ef-
ficient and accurate numerical solutions to quantum dy-
namical problems of interest.

In this article we shall focus on three aspects of DVR/’s:
what they are and how they compare with other ”point-
wise representations”; how they simplify solutions of
multi-dimensional quantum dynamical problems, both in
the time dependent and time independent frameworks;
and their limitations, both in terms of their applicabil-
ity to various coordinate systems and operators, and in
terms of the accuracy of the solutions of the quantum
problem at hand.

The objectives of this article are then

a) to review various definitions of DVR’s, the differ-
ences between them, and their mathematical and physi-
cal foundations;

b) to note the basic advantages of DVR’s in the solu-
tion of quantum dynamical problems in chemical physics;

c) to indicate the modes of solution for such problems;

d) to note the circumstances in which DVR’s are not
advantageous;

We hope this will remove confusion about DVR’s and
make their use both better understood and simpler.

We should note at the outset that the bias of this ar-
ticle is toward the solution of the Schrodinger equation
, a linear second order partial differential equation with
specified boundary conditions, primarily for nuclear dy-
namics, not electronic structure. This is a broad area en-
compassing theoretical molecular spectroscopy, dynam-
ics, chemical reactions, etc. Although applications have
been made to other non-linear systems, this article will
not include these areas.

A fundamental problem in chemical physics is to solve
the Schrodinger equation :

HU = EV (1)
or
., 0v

which governs the properties and dynamics of matter at
the atomic and molecular level. We will focus on nuclear
motion on potential energy surfaces (PES’s), and thus
not be concerned with spin operators, etc., although non-
adiabatic coupling between PES’s may be included.



The above Hamiltonian, H, contains a second order
differential (kinetic energy) operator in coordinate space,
K({a}), and a potential energy operator, V({q}, t) which
depends on coordinates and perhaps the time. {q} stands
for the set of coordinates describing the system, and the
Hamiltonian is

H({q}) = K({a}) + V({q}, ). (3)

We are interested in solutions both of molecular bound
state and of scattering problems. In the bound state
problems, the solutions, ¥({gq}), of Eq. (1) are local-
ized, and therefore are a discrete set of square integrable
( L? ) eigenfunctions with discrete eigenvalues, E = ¢;.
We usually take these eigenfunctions to be normalized
over the coordinate range. Scattering solutions of the
time independent Schrddinger equation are not square
integrable, but the asymtotic forms of the solutions are
known, and appropriate scattering boundary conditions
may be applied. There is usually some finite range in
which a numerical (versus analytical) solution is required,
and this solution is then matched in some fashion to the
known asymptotic form. Thus in both bound and scat-
tering problems we may consider the numerical solution
of the Schrédinger equation in only a finite coordinate
range. For scattering solutions of the time dependent
Schrédinger equation the use of absorbing potentials at
finite ranges (or other techniques) also limits the range
over which numerical solutions are required.

This has an enormously important consequence for
the mathematical representation of Eqs 1 and 2. We
need represent the solutions numerically only in a fi-
nite coordinate range, with boundary conditions either
zero for bound states or permitting appropriate asymp-
totic matching for scattering states. An important conse-
quence of this is that accurate dynamics, up to a specified
energy, E, can be represented in a finite basis of N func-
tions of the coordinates, {6,({q})}n~, (where, of course,
N may be very large depending on the accuracy desired).

After a brief presentation of the historical context the
article is divided into the following sections:

1) DVR’s in 1-dimension: various types and compar-
isons;

2) Properties of multi-dimensional DVR’s and meth-
ods used to solve the Schriédinger equation equation in
DVR’s;

3) Caveats:
quadratures, etc;

4) Conclusions

problems and resolutions; numerical

B. Historical Context

Unfortunately this description of the historical con-
text of DVR’s must be limited by the authors’ knowledge
and understanding. Since we are neither applied mathe-
maticians nor historians there may be large gaps in our
presentation, particularly with respect to the numerical

analysis literature. We have, however, tried to be ac-
curate as to the historical roots of these approaches in
chemical physics.

The numerical solution of differential equations has
been studied for centuries, presumably since the time
of Newton. However, the restriction to linear equa-
tions such as the Schrédinger equation permits a vari-
ety of powerful approaches based on linear algebra, and
the spectral properties of the Hamiltonians permit vari-
ational solutions. Thus for the Schrodinger equation a
solution may be represented by an exact analytic func-
tional form, ¥;({q}); by values on a grid in coordinate
(or momentum) space, (¥;); = ¥;(q;); or by a represen-
tation in a complete basis,

Ti({ah) = cadi{a}) (4)
i

Basis set representations started, of course, with Fourier
series. More general Hilbert spaces and representations
in terms of orthogonal basis expansions (due to Lord
Rayleigh) were not developed until about 1900 (See Lanc-
zos, [1]).

Discrete variable representations are representations in
bases of continuous functions which are in some sense lo-
calized ”on a grid” in coordinate space. In particular, to
construct a DVR, a finite basis of ”global” orthnormal
functions is transformed to another orthnormal basis set
(the DVR) in which each basis function is ”localized”
about one point of a coordinate space grid. The rela-
tionship is most clear for basis sets of orthogonal polyno-
mials (with weight functions) and their associated grids
of Gaussian quadrature points. This relationship may
have been known earlier, but was pointed out for Cheby-
shev polynomials in the last section of Lanczos’ book on
Applied Analysis [1] published in 1956. Somewhat later
(1966), L. Fox [2,3]. also noted that sets of orthogonal
(Chebyshev) polynomials evaluated at the appropriate
set of Gaussian quadrature points, formed an orthogonal
transformation between the original polynomial represen-
tation and a more localized representation.

In chemical physics, Harris, Engerholm, and Gwinn [4]
in 1965 generated the appropriate transformation via di-
agonalization of the coordinate operator. Their purpose
was to evaluate approximately the matrix elements of
coordinate (potential) functions in the basis by transfor-
mation of the diagonal matrix of the potential evaluated
at the coordinate eigenvalues. In their specific case the
basis functions were harmonic oscillator functions. In
1968 Dickinson and Certain [5] noted that the eigenval-
ues of the coordinate operator so obtained were, in fact,
the Gaussian quadrature points for the (Hermite) poly-
nomial used. This lent support to the accuracy of the
matrix elements evaluated in this fashion.

In 1982 Lill, Parker, and Light [6,7] and and then
Heather et al. [8] first explicitly used the transformed rep-
resentation in which the coordinate operator is diagonal,
the discrete variable representation, as a basis represen-
tation for quantum problems rather than only a means



for evaluation of matrix elements. The approach was in-
troduced independently by Blackmore and Shizgal [9,10]
in 1984 under the name ”discrete ordinate method”. In
one dimensional problems, the use of a DVR may of-
fer only a slight advantage. In higher dimensional prob-
lems with direct product basis sets, however, it becomes
highly advantageous. This was noted when using a DVR
in conjunction with a distributed Gaussian basis (DGB)
by Bacic et al. [11-14] and for multi- dimensional DVR’s
by Whitnell et al. [15] and Light, Whitnell, Choi, and
Park [16].

About 1990, discrete variable representations became
increasingly widely used, and a number of variations and
different prescriptions for their definition were presented
by Manolopoulos and Wyatt [17], Echave and Clary [18],
Wei and Carrington [19], Muckerman [20], and Colbert
and Miller [21]. More recently Szalay [22] has proposed
a generalized multi-dimensional DVR. Several earlier re-
view articles on the definitions and uses of DVR’s are in
References [14,16,23,24].

II. ?POINTWISE” REPRESENTATIONS IN ONE
DIMENSION

A. Introduction to Types of DVR’s

In the general variational approach to quantum prob-
lems, the unknown solution is represented exactly in
a (usually infinite) basis, or, more properly, a Hilbert
space. In practice, of course, the infinite basis is trun-
cated, and the approximate solutions in this truncated
representation are variational, ¢.e. the energy eigenval-
ues of the Hamiltonian in this truncated basis are all
larger than or equal to the corresponding exact eigenval-
ues. We call the representation in which all Hamiltonian
matrix elements are evaluated exactly the ”variational
basis representation” or VBR. In the VBR errors are due
only to the truncation of the basis.

In general terms, DVR’s are representations in terms of
localized functions which are usually obtained by trans-
formation from a truncated ”global” basis. DVR’s are
generally used with the approzimation that in the DVR
the matrix representation of functions of the coordinate
are diagonal and the diagonal matrix elements are values
of the function at the DVR points. The term DVR in this
paper implies that this approximation is made. It should
be noted, however, that although the DVR functions are
”focused” on the grid points, they are not perfectly lo-
calized. Each function extends throughout the range of
the original basis. For example the infinite set of sinc
functions f,(x) = sin[r(x — z,)/Ax]/7(z — z,) with n =
0, £1, £2, ... and x, = n Ax. is an infinite DVR basis
with DVR points at x,, [21]. Each function, f, is unity
at x = x,, and zero at all other DVR points, but it is not
zero for values of x between the DVR points. The sinc
functions are symmetric about their DVR points but are

infinite in extent, having an oscillatory shape typical of
the ”localized” DVR functions. The ”focal points” (DVR,
points) of the DVR basis functions form a grid of points,
and the Hamiltonian is then approximated as a matrix
labeled by the grid points because DVR functions can be
labeled by the grid point about which they are localized.

There are several ways to construct DVR’s: one may
establish a connection between a set of basis functions
and an appropriate numerical quadrature; one may diag-
onalize a function of the coordinate operator in a basis
set; or one may choose a basis of localized functions ini-
tially. In the approach based on numerical quadrature,
the relationship between basis size and quadrature accu-
racy is direct. In the first two approaches, the transfor-
mation between DVR and global basis representation is
known. In cases where this is a unitary or orthogonal
transformation, operators in the global basis obtained by
transformation from the DVR contain exactly the same
approximations as the DVR. To distinguish this approx-
imation from the VBR, we call it a ”Finite Basis Repre-
sentation” or FBR. Thus the VBR is an exact representa-
tion in terms of global basis functions, while the DVR and
FBR are ”local” and corresponding ”global” representa-
tions in which an approximation has been made. We first
will examine the different one dimensional DVR’s and
their relations to the FBR and VBR from the viewpoint
of Gaussian quadrature, and then examine DVR’s from
the ”product” point of view which is useful for complex
kinetic energy operators.

B. Orthogonal Polynomial Bases and Gaussian

Quadrature DVR’s

The "standard” DVR’s are defined in terms of classi-
cal orthogonal polynomials, weight functions, and their
related Gaussian quadratures [6,25]. The approxima-
tions in these DVR’s (and the corresponding FBR’s) are
related directly to the approximations of the Gaussian
quadratures associated with the polynomials used. Clas-
sical orthogonal polynomials form many common one di-
mensional basis sets such as particle-in-a-box functions
(Chebyshev polynomials), harmonic oscillator functions
(Hermite polynomials), Legendre polynomials, Laguerre
polynomials, etc. An excellent description of these poly-
nomials is given in Dennery and Krzywicki [26] and con-
cise definitions are given in Abramowitz and Stegun [27].
The basic property of classical orthogonal polynomials is
that they are (normed) polynomials orthogonal with re-
spect to integration over their range with a specific weight
function, w(z), i.e.

z=b

/ w(@)C1 (£)Co (@)dz = 51 (5)

r=a

where C;(x) is a polynomial in x of 1" degree.



There are three general types of classical orthogonal
polynomials based on the range of their argument, infi-
nite, semi-infinite, or finite. These are summarized in the
table below. Note that the arguments can be scaled and
shifted so the mathematical ranges below correspond to
the appropriate physical coordinates and ranges as de-
sired.

Table 1.Ranges and Weight Functions for Classical
Polynomials.

z=b
X, = / 61 (2)36n (2)da

_Z w"‘

Both relations are exact for 0 < I,n < N—1 since the
N basis functions contain only powers of x from x° to
xN¥~1)) The polynomial basis functions, ¢, (z), are fre-

[ (Ta)Tatn(Ta) (8)

quently chosen sa that they are eigenfunctions of an op-

Name of Polgpomgialy, where| H = Hy + V, with Ho = K + Vo. K

Range Weight function
(-00,00) exp(-x?)
functions.
[0, 00) x” exp(-x) v> -1
[-1,1] |1 —2)*(14+x)? a,8 > —1 Jacobi, PP,
(Legendre and Chebyshev polynomials)

Hermite, Ho bRk kinetic energy operator and V; is the part of the
(harmonic 050111“95@1%5110{1@ any)|included in the definition of the basis

V . . . -
Laguerre, Ly {x) may now write the above equations in matrix form

if e identify the elements of the transformation matrix,

One simple way to introduce the DVR is to use the
well known properties of Gaussian quadratures [28] to
generate the transformation between the FBR and the
DVR. We show that the same transformation is obtained,
following Harris, Engerholm and Gwinn [4], by diagonal-
izing the argument of the orthogonal polynomials. The
argument might be the coordinate operator itself or a
function of the coordinate operator. We emphasize that
in this fashion DVR’s can be easily constructed for most
standard basis functions without explicit consideration
of the properties (or points and weights) of Gaussian
quadratures. The primary purpose of the section below
is to show the relations which exist between the DVR and
Gaussian quadrature and thus demonstrate the basis for
the high accuracy of DVR’s.

The basic property of Gaussian quadratures for these
polynomials is that for each type of polynomial a quadra-
ture defined on N specified points {x, }n with particular
weights {wa }n is exact for integrals of the weight func-
tion w(x) times polynomials up to order 2N - 1. Thus if
our basis functions are normalized orthogonal polynomi-
als times the square root of the weight functions, w(x)

= Vw(z)Cn(z) (6)

then the orthonormality relations are given exactly by
the quadrature

z=b
m:/ﬁ@m@w

[ (Za)n(za) (7)

and the matrix elements of the coordinate x are also given
exactly by

Wy '
Toj = \/m ¢j(Ta) 9)

Note that T is a square matrix; there are the same num-
ber of points as basis functions. Then Eqgs (7) and (8)
are equivalent to the matrix relations

I=TIPVE T (10)
X =1t XPVE T (11)

where Tt is the Hermitian transpose of T, IPVE is a
unit matrix labeled by the quadrature points and XPVE
is the diagonal matrix of values of z at the quadrature
points {x4}, i. e. the DVR points.

Since Eq (10) demonstrates that T is orthogonal (or
unitary), we can multiply Eq. (11) by T on the left and
by Tt on the right and find that T is the matrix which
diagonalizes the exact coordinate matrix, X:

TXT! = XPVE(diagonal) (12)
Thus we see that the diagonalization of X generates the
Gaussian quadrature points as the eigenvalues, and the
transformation matrix related to the Gaussian weights
and points given by Eq (9). Thus the Gaussian quadra-
ture points are the DVR, ” points” and T is the DVR-FBR
transformation. Obviously it can be generated either
from the polynomials themselves via Eq. (9) or by di-
agonalization of X. The tridiagonal coordinate matrix X
is easily generated from the three term recursion relations
satisfied by all classical orthogonal polynomials [27,26].
DVR’s are most commonly and most easily determined
by diagonalization of the exact coordinate matrix, and
no explicit reference to quadrature points and weights is
then required.

If we label the DVR eigenvalues by Greek letters, then
the basis function localized at x,, is

= 3 T05(a) (13)



An important property of these functions is that each
function is non-zero at the DVR point about which it
is ”localized”, but is zero at the remaining N - 1 points.
This is easily seen by evaluating Eq. (13) at a DVR point:

00V E(zp) = Y Thi5(xp)
j

w(Za)

=3\ or 93 (@a)ds(as)

_ [w(zp)
— w—B(TTT)aﬁ

_ w(ﬂ?ﬁ)(saﬁ (14)
wg

Note that this also yields the normalization of the DVR
functions over the quadrature:

/b 02 (r)do = 3 62 (25) —2—
a “ ) “ w(mﬁ)
= 25aﬁ
B

=1 (15)

The equations T Tt = Tand Tt T = T are the discrete
orthonormality relations of DVR’s.

In practice the simplest procedure to define a Gaus-
sian quadrature DVR is to generate the exact tridiag-
onal coordinate matrix implicit in the three term recur-
sion relation satisfied by the appropriate orthogonal poly-
nomials and then to diagonalize this matrix. The only
care required is that the normalization of the polynomi-
als must generate an orthonormal basis from Eq. (6).
After determining the Gaussian quadrature points, they
must be scaled to the appropriate physical range via a
linear transformation.

Viewed from the Gaussian quadrature viewpoint it is
clear that a Gaussian DVR is as accurate as an FBR
with potential matrix elements evaluated by a Gaussian
quadrature with an equal number of DVR quadrature
points and basis functions. An alternate view is to view
the DVR as a ”product approximation” described below.

C. Product Approximation and Potential Optimized
DVR’s (PODVR)

We have discussed three representations: the VBR, the
FBR, and the DVR. In a VBR all matrix elements are
computed exactly; errors with a VBR occur only because
the VBR basis is finite. The FBR and the DVR are uni-
tarily equivalent and an FBR may be thought of in two
ways. If the underlying basis for the DVR is a classical
orthogonal polynomial basis, then a ”quadrature” FBR
is the representation obtained by evaluating the resid-
ual potential matrix elements by Gaussian quadrature

and taking exact, analytic kinetic energy (or H,) matrix
elements. (If it is not possible to write down analytic
kinetic energy matrix elements an FBR is constructed
as explained below in the section on complicated kinetic
energy operators). However, a "product” FBR can be
generated from any representation in which the kinetic
energy matrix (or H,) and the transformation to the rep-
resentation in which the coordinate matrix is diagonal
are known. The FBR for such a product approrimation
is obtained for a Hamiltonian by using the exact, analytic
kinetic energy matrix and replacing the matrix represen-
tations of products of the coordinate in the potential with
products of the matrix representation of the coordinate.

Thus the matrix representation of a function of x is ap-
proximated as the function of the matrix representation
of x (assuming the function has a Taylor series expansion
in x):

[V(2)]ij = [V(X)]i; (16)

However, in order for a product of operators to be eval-
uated exactly as a product of matrices, a complete basis
must inserted between the operators:

oo

[ABJ;; = > AinBn; (17)

n

Thus the above expression containing products of the
operator, x, is only an approximate evaluation of the po-
tential matrix in a finite representation. However, as the
dimension, N, of the basis increases, matrix elements for
a given {i,j} become more exact.

Errors (if any) in results computed with a quadrature
FBR (or its corresponding DVR) occur because the VBR
(from which the FBR is obtained) is finite and because
some potential matrix elements are not computed per-
fectly by quadrature. Errors (if any) in results computed
with a product FBR occur because the VBR is finite and
because the product approximation is not perfect. If the
matrix representations of the factors of the products are
banded matrices the error introduced by the product ap-
proximation is restricted to the bottom right hand corner
of the matrix. [19]).

If the VBR basis functions are orthogonal polynomials
as discussed above and one chooses as many quadrature
points as basis functions, the quadrature FBR and the
product FBR are identical (the matrix element errors are
also identical). Since a DVR matrix is unitarily equiv-
alent to its FBR counterpart, errors (if any) in results
computed with a DVR are the same as the errors which
would be obtained with the corresponding FBR. They
may equally well be thought of as being due to the finite-
ness of the VBR basis and either (i) the quadrature error
or (i) the product approximation error.

Obviously one wants to make the errors as small as pos-
sible. If one uses a Gaussian quadrature FBR, errors are
minimized by choosing good VBR basis functions (basis
functions which represent wavefunctions compactly) and



using many functions such that the quadrature error for
the residual potential is minimal.

If one uses a basis not associated with a Gaussian
quadrature, then product FBR errors would be mini-
mized by choosing VBR basis functions which both rep-
resent wavefunctions accurately and compactly (i.e. de-
crease the size of off-diagonal matrix elements) and im-
prove the accuracy of the product approximation. How-
ever, it is often (but not always) the case that basis func-
tions that render the Hamiltonian matrix more diagonal
(good VBR basis functions) will decrease the accuracy of
the product approximation since the coordinate matrix,
from which the product approximation FBR is built, will
be far from diagonal. If one is willing to accept this degra-
dation of the accuracy of the product approximation one
can optimise the VBR. This leads to the potential opti-
mised DVR (PODVR).

In 1992 Echave and Clary [18] and Wei and Carrington
[19] introduced a means of generating a DVR which con-
centrates the DVR points in the region of space where
they do the most good and which minimizes the resid-
ual potential. The approach is useful only in multi-
dimensional problems where it may greatly reduce the
size of the basis required for each coordinate, but is eas-
ily described for one coordinate.

If one wants a small DVR for an arbitrary one dimen-
sional bound potential, then an advantageous DVR, (with
a good distribution of points in x and a smaller residual
potential) may be obtained by using a DVR, determined
from eigenfunctions of a model potential in x. The pro-
cedure is simply that of Harris et al. [4] outlined above,
except that eigenfunctions of a model Hamiltonian are
used as the basis.

A PODVR with N points is obtained by first defining a
good model potential for the coordinate in question, and
then solving accurately for N eigenfunctions. (This may
require a basis size considerably larger than N whether
using a DVR or not.) The coordinate matrix is then diag-
onalized in the N eigenfunctions to yield the DVR-FBR
transformation and the DVR points. In constructing the
Hamiltonian in the PODVR (e.g. for multi-dimensional
problems), the N eigenvectors are transformed to the
DVR and the residual potential is evaluated in the DVR.
This product approximation is found to be very useful in
multi-dimensional problems, permitting a much smaller
DVR in the dimension for which the PODVR is con-
structed.

In a multidimensional problem one defines a PODVR
basis for each coordinate in a similar fashion using an
appropriate model potential. Then products of the the
PODVR functions for each coordinate are used as direct
product basis functions for the full problem. Although
DVR points for a single degree of freedom will be strewn
between the limiting values of the coordinate, PODVR
points are concentrated in regions where the amplitude
of the wavefunction is significant.

PODVRs are most advantageous when coupling be-
tween degrees of freedom is weak. If there were no cou-

pling products of solutions of one-dimensional Hamiltoni-
ans would be solutions of the Schrodinger equation equa-
tion for the multidimensional Hamiltonian. If the cou-
pling is weak such products (and the associated PODVR
functions) are very good basis functions. If, however, the
coupling is strong PODVR functions will be less useful.

PODVR’s share some of the properties of Gaussian
DVRs. The transformation matrix T is composed of the
eigenvectors of the coordinate function diagonalized and
is orthogonal but because PODVR/’s are not derived from
a Gauss quadrature scheme it is not possible to write the
PODVR transformation matrix as Eq. (13). PODVR
functions will, therefore, not exactly satisfy Eq. (14) but
this does not necessarily limit the quality of the results
obtained with a PODVR: the accuracy of PODVR results
is determined by the accuracy of the associated product
approximation and the minimization of the residual po-
tential.

D. Hamiltonian evaluation

We now look briefly at the consequences of approxi-
mating the Hamiltonian in the DVR. The choice of the
underlying basis for the DVR is based on the Hamilto-
nian, the boundary conditions on the wave functions, and
the domains of the coordinates. It would be ideal to have
the spacing of the quadrature points proportional to the
nodal spacing of the highest eigenfunctions of interest,
and to have the basis satisfy the appropriate boundary
conditions. Chebyshev polynomials (particle in the box
functions) yield DVR’s with equally spaced points in x
= cos~'#; Legendre and associated Legendre polynomials
(with x = cos(6) )are appropriate for angular functions
on § = (0, ) satisfying boundary conditions of unity and
zero respectively, etc. Using the Jacobi polynomials with
differing o and g shifts the DVR points away from x =
1 and -1.

Given an exact evaluation of the Hamiltonian matrix in
the VBR the Hamiltonian could be evaluated exactly in
the DVR by transformation from the exact VBR Hamil-
tonian:

fPVR — 7Y BRTt (18)

where
HYBR — j,VBR | yVBER, (19)
Here VVBE ig the exact representation of the residual

potential, the portion of the potential not included in
Ho. HoV2% is transformed from the VBR where it is
usually simple to determine. Szalay [29] has given ana-
lytic formulae for the differential operators, d/dg and the
second order differentials, di:g for all orthogonal polyno-

mial DVR’s of Gaussian quadrature accuracy. It is there-
fore often easy to evaluate THo" P#T? (see sectionIII C
for alternative methods). However, to obtain HPV# the



residual potential matrix, VV B would have to be evalu-
ated exactly in the VBR beforehand, and this eliminates
any advantage of the DVR. The potential matrix evalu-
ated exactly as above in the DVR is diagonally dominant,
but is not exactly diagonal.

The power and simplicity of the DVR comes from ap-
proximating the residual potential matrix in the DVR.
The matrix representation of V, the residual potential
energy, is, however, approrimated by the quadrature of
the DVR itself. Thus

HPVE — gDVR | yDVR (20)
where
HPVE = THY BETT, (21)
and we approximate the residual potential as
VLR = V(xa)das (22)

Thus the DVR approximation is equivalent to approxi-
mating the exact residual potential matrix, V as:

V ~ TIVPVET = VvFBR (23)

The DVR with an underlying orthogonal polynomial
basis is exactly equivalent to evaluating potential ma-
trix elements using the Gaussian quadrature appropriate
to the basis, with N quadrature points. The disadvan-
tage of this is that the eigenvalues resulting from evaluat-
ing the Hamiltonian in the DVR are not variational; the
quadrature error may cause some eigenvalues to be below
their true value. (For a recent discussion, see Wei [30]).
However, the advantage of DVR’s based on the classical
orthogonal polynomials is that the convergence of the
Gaussian quadratures to the exact integrals is excellent.
For smooth potentials as the basis size is increased (and
the number of DVR points is increased), the quadrature
error quickly disappears at least for lower levels. The
convergence of these eigenvalues is then limited by the
basis set in a variational fashion.

E. Other DVR’s

Alternate grid representations have been proposed as
DVR’s by Muckerman [20], Manolopoulos and Wyatt
[17], Colbert and Miller [21] and others. These all share
the characteristic that in representing the Hamiltonian,
coordinate functions are represented by their values at
grid points. However, all differ from Gaussian DVR’s
in that not all of the equations of orthonormality, ex-
act quadrature for the coordinate and the definition of
the DVR-FBR transformation in terms of the basis func-
tions and quadrature points hold exactly ( Egs. (7), (8),
and (9)). All three approaches define the DVR functions
directly as Lagrange interpolating polynomials or by an-
alytic transformation and summation. Of these DVR’s
we will discuss only the Lobatto quadrature DVR and
the ”sinc” DVR of Colbert and Miller as these have seen
the most frequent application.

1. Lobatto DVR

The Lobatto quadrature/function DVR was intro-
duced by Manolopoulos and Wyatt [17] for scattering
problems in which simple evaluation of non-zero bound-
ary conditions was desired. The Lobatto shape functions
are Lagrange interpolating polynomials over the Lobatto
quadrature points. These are the DVR functions. Lo-
batto quadratures are well known [27]. Lobatto shape
functions satisfy the pointwise orthogonality relations on
the quadrature points as in Eq. (14) and are orthogonal
over the quadrature, but their squares are not themselves
integrated exactly by the quadrature. The kinetic energy
operator can be determined exactly in this DVR.

Manolopoulos et al. demonstrated that their DVR pro-
vided a simple L? basis for scattering when L? methods
requiring log derivative evaluation at the boundary are
used. Since most basis sets fix the log derivative at the
end points, they do not have sufficient flexibility to be
used. Although Jacobi polynomials could be used, the
Lobatto functions have the advantage that the log deriva-
tive is simple to evaluate in this basis as only one function
is non-zero (unity) at the boundary.

2. Sinc DVR

In 1992 Colbert and Miller [21] introduced a ”novel
universal” DVR in which they evaluated the kinetic en-
ergy operators by infinite order finite differences on infi-
nite uniform grids. The kinetic energy representation on
the grid was derived using particle-in-a-box functions,
which are, of course, Chebyshev polynomials, and the
number of functions was permitted to go to infinity as
the range became infinite, with Ax = L / N finite. (In
the finite and semi-infinite range cases, discussed [21] the
functions are not as appropriate or accurate as, for exam-
ple, Legendre polynomials, and these cases have rarely, if
ever, been used.) We therefore discuss only the ( -oc0, 00)
range case in which case the basis becomes the infinite
set of sinc functions.

In the infinite range case the kinetic energy operator
becomes, of course, translationally invariant, depending
only on the distance between the grid points in question.
This DVR corresponds to an infinite basis of sinc func-
tions,

sin(n(z — zp)/Az)
m(x — zy)

where x,, = nAx, and n =0, £1, £2, ...

On the surface, these DVR functions and the associ-
ated quadrature would seem ideal since the kinetic en-
ergy matrix elements are given analytically, on the DVR
points; the basis can be orthonormal, both analytically
and on the uniform quadrature; the discrete orthonor-
mality holds (Eq. 14); and the coordinate operator, x,
is given exactly in this localized basis by XPV#,;, = x;



0;j. The problem, however, is that in application one
cannot use an infinite basis. For a finite set of points,
the kinetic energy is not given exactly by the truncated
representation and as with all DVR’s, the potential en-
ergy is also not given exactly. The sinc DVR is usually
truncated by limiting it to regions in which the potential
energy is less than some maximum value. It has, however,
the advantage of great simplicity (equally spaced points
and analytic kinetic energy matrices) and has been quite
widely used.

F. Generalized DVR’s?

As noted above and discussed in Section ITI, DVR’s are
useful primarily for multi-dimensional problems. If direct
product bases are used for the multi-dimensional system,
the basis for each dimension may be separately trans-
formed to the DVR. In this representation, the multi-
dimensional potential energy is diagonal, and the kinetic
energy terms may be evaluated simply from the one-
dimensional representations of each momentum or sec-
ond derivative operator. In the case of orthogonal coor-
dinates, this leads to very sparse Hamiltonian matrices
in the multi-dimensional DVR.

However, there exist coordinate systems, spherical po-
lar coordinates being the most familiar, where eigenfunc-
tions of the kinetic energy operators do not form direct
product bases, e.g. the spherical harmonics. For multi-
dimensional coupled bases such as the two dimensional
spherical harmonics, an accurate quadrature and DVR-
FBR transformation cannot be generated by diagonaliza-
tion of a coordinate. Thus no simple 1:1 mapping of an
arbitrary number of basis functions to DVR type func-
tions by unitary or orthogonal transformations exists.

A few attempts to overcome this difficulty have been
made without great success. In particular the colloca-
tion method generates a non-orthogonal transformations
between the basis and a set of points, but leads to a gen-
eralized eigenvalue problem with attendant problems of
some complex eigenvalues. Light et al. [25] generated an
orthogonal transformation using the metrics of the collo-
cation matrix. Although this is briefly described below,
the accuracy is greatly dependent on the choice of points
and this avenue has not been used for real problems.

If the N basis functions {¢, } are evaluated at N ”inde-
pendent” points, {qq} a square collocation matrix may
be formed:

Ry = ¢n(ga) (25)

If one takes the collocation matrix to define the DVR-
FBR transformation, then the metrics of the two repre-
sentations are related by:

S = R(A)"IR! (26)

where S and A are the metrics in the FBR and DVR
respectively.

Thus if the functions are orthonormal and we want to
maintain the orthonormality over the quadrature implied
in the DVR, then S is the unit matrix, and A must be
chosen accordingly:

A=R'R (27)

If A is a diagonal and positive definite, then a good
quadrature is defined using the diagonal values of §71.
For general points and basis sets this will not be true. If
A~ exists, however, an orthogonal transformation can
still be defined by

T =RA™Y/? (28)

However, in multi-dimensional systems not only is A not
diagonal, but it often has very small eigenvalues indicat-
ing that on the set of points chosen, the set of functions is
not independent (or vice versa). In this case the attempt
to represent the Hamiltonian accurately in the DVR fails
disastrously.

Recently Szalay [22] has investigated this problem fur-
ther and has shown that with careful choice of points
a mixed representation of the Hamiltonian can be used
which yields some eigenvalues with quite acceptable ac-
curacy. The final GDVR method proposed is in essence
a collocation method and impressive accuracy was ob-
tained for 1-D problems. (The accuracy was much
higher than for the GDVR described above.) The costs,
however, are similar to those encountered in colloca-
tion methods which include dealing with the generalized
eigenvalue problem. In the two dimensional example
given, complex eigenvalues were encountered before all
bound state eigenvalues were determined.

It has become apparent from a number of studies
[31-35] that such non-direct product multi-dimensional
bases are best treated by direct product quadratures,
with enough points in each dimension to assure accurate
evaluation of the matrix elements. (The basis represen-
tation is used.) The use of direct product quadratures
(i.e. the points and weights in each dimension are inde-
pendent of the other dimensions) greatly simplifies the
transformations between the basis and grid representa-
tions. In addition, one can choose the quadratures suf-
ficiently large that all matrix elements are evaluated ac-
curately. These can, of course, be combined with DVR’s
in other coordinates in a direct product fashion. This is
discussed more fully in the section on applications below.

III. MULTI-DIMENSIONAL DVR’S AND
APPLICATIONS

A. Introduction

In the previous section we defined and discussed vari-
ous DVR’s. In this section we consider how the favorable
properties of DVR’s facilitate solving the Schrédinger



equation . Many problems of interest in chemical dynam-
ics and spectroscopy involve large amplitude motions of
polyatomic systems. For such problems numerical rep-
resentations are required and standard harmonic normal
mode approximations are not adequate. If one is to solve
the Schrodinger equation accurately for such systems, it
is important to have

a) accurate potential energy surface(s);

b) an appropriate coordinate system for the Hamilto-
nian operator;

c¢) an adequate and efficient basis in which to represent
the Hamiltonian; and

d) appropriate means of extracting the desired infor-
mation.

To extract the desired information the first thing one
must do is to write down equations for the matrix ele-
ments of the Hamiltonian. This is addressed in subsec-
tions B and C. In subsection D we present procedures
for exploiting symmetry. In subsections E and F, we
discuss ideas for coping with the huge number of basis
functions required to obtain converged solutions for poly-
atomic large amplitude motion problems. Even for total
angular momentum zero there are 3n - 6 degrees of free-
dom for an n atom system and it is therefore imperative
that one either devise schemes to minimise the number of
basis functions or employ iterative methods that depend
only on matrix-vector products. Explicit sequential diag-
onalization truncation schemes for obtaining a compact,
high-quality basis from a multidimensional direct prod-
uct DVR are treated in subsection E. The use of iterative
methods with DVRs and basis sets obtained from DVRs
is considered in subsection F.

B. Orthogonal coordinates

Orthogonal coordinates are coordinates in terms of
which the kinetic energy operator has no mixed second
derivatives (no cross terms). Because the kinetic energy
operator is simpler in orthogonal coordinates they are
often preferable (however, it is possible that basis func-
tions which are functions of coordinates which simplify
the kinetic energy will be poorer basis functions and that
the trade-off to simplify the kinetic energy operator is an
increase in the size of the Hamiltonian matrix).

DVR’s are useful primarily for multi-dimensional prob-
lems. If a direct product basis is used for the multi-
dimensional system, the basis for each dimension may
be separately transformed to the DVR. In this DVR the
multi-dimensional potential energy is diagonal. In the
case of orthogonal coordinates, the kinetic energy terms
may be evaluated simply from the one-dimensional rep-
resentations of each momentum or second derivative op-
erator. this leads to very sparse Hamiltonian matrices in
the multi-dimensional DVR.

The great simplification of Hamiltonians using direct
product DVR’s are most easily demonstrated for a three

dimensional Cartesian system. In a three dimensional
Cartesian DVR where the DVR points for x, y, and z
are labeled by a, 8 and « respectively, the Hamiltonian
matrix elements would be:

Hoo .8 77 = KXa,a"sﬁ,B"s’y,W’ + Kyﬁ,,af‘sa,a"s%v’ + Kz'y,'y"sa,a"sﬁ,

+V (o, Yps 27)0a,a1 08,50

where K; is the kinetic operator for the i coordinate.

For triatomic molecules orthogonal coordinate systems
such as Jacobi coordinates, Radau coordinates, and hy-
perspherical coordinates all permit one to avoid mixed
second derivatives. If kinetic energy singularities are
unimportant (unimportant singularities are singularities
for which all wavefunctions are extremely small where the
kinetic energy operator is infinite), they can always be
dealt with by simply not putting quadrature points close
to the singularity. It is straightforward to construct a
direct product DVR for the triatomic Jacobi, and Radau
Hamiltonians.

For coordinates with more complex kinetic energy op-
erators, direct product DVR’s are still highly advanta-
geous for iterative methods in some cases. For four-atom
molecules it is not possible to choose coordinates to elim-
inate all terms with mixed second derivatives from the
kinetic energy operator and one is forced (if the calcu-
lation is to be exact) to deal with complicated kinetic
energy operators.

C. Complicated kinetic energy operators

A quadrature FBR is defined above as the represen-
tation obtained by evaluating potential matrix elements
by Gauss quadrature and taking exact, analytic kinetic
energy matrix elements. One transforms from the FBR
to the DVR using a transformation matrix which may
be obtained by diagonalizing a matrix representation of
a coordinate function. If exact (FBR) kinetic energy
matrix elements are known it is easy to determine the
DVR of a kinetic energy operator. However, obtaining
an hermitian FBR (or DVR) of a complicated kinetic
energy operator, whose terms involve both (noncommut-
ing) derivatives and functions of coordinates is somewhat
tricky because analytic kinetic energy matrix elements
are generally not available. We denote a kinetic energy
operator as ”complicated” if either i) it is factorizable
and matrix elements of a factor which involves derivatives
must be calculated numerically, or ii) it is not factoriz-
able and matrix elements of a term must be evaluated
numerically, or iii) matrix representations of derivatives
are not antihermitian.

One way to obtain an hermitian FBR for a complicated
kinetic energy operator is to use Gauss quadrature to
compute kinetic energy matrix elements. A DVR matrix
can then be obtained by transforming the FBR matrix
whose elements are computed by quadrature. As origi-
nally defined, for simple kinetic energy operators, one can



compute matrix elements of the DVR Hamiltonian ma-
trix without calculating integrals by quadrature. DVR
matrices for coordinate functions are obtained directly
from values of the functions at the DVR points and not
by first computing an FBR matrix which is then trans-
formed to the DVR. Not having to compute integrals
makes the DVR simple and convenient. It would be ad-
vantageous not to have to evaluate quadratures even for
complicated kinetic energy operators. Quadrature may
be avoided only by using some sort of product approxima-
tion. We refer to replacing the matrix representation of
a product of operators with a product of representations
as a product approximation (see II.C). Unfortunately, a
simple product approximation Hamiltonian matrix may
be nonhermitian. In this section we show how the prod-
uct approximation can be used to construct an hermitian
DVR of a general kinetic energy operator without evalu-
ating quadratures.

Consider a one-dimensional (1d) Hamiltonian (in
atomic units) with a complicated kinetic energy oper-
ator:

H=K+V, K-= —(1/2)diG x

- z € (21,%2)

(31)

with a unit weight factor so that orthogonal basis func-
tions are normalized as

/ dzl,, (x

where G and V are real and G is positive and bounded.
If G satisfies the boundary condition

*en(w) = dmn, (32)

G(z;) =0 (33)
then even if 0,(z;) and +6,(z;) are nonzero at the
boundary point z;, the 6,(z) matrix representation of
the Hamiltonian is hermitian. The matrix representing
the derivative with respect to x is not antihermitian if
the ”surface term” 6, (x)*6,(x)|72, obtained by integrat-
ing by parts, does not vanish. Despite the fact that the
derivative matrix is not antihermitian the kinetic energy
matrix is hermitian, if matriz elements are evaluated ex-
actly. We now show that, with care, the product approx-
imation can be used to construct an hermitian DVR of
the KEO.

To define a prescription for building DVR matrices for
complicated kinetic energy operators without evaluating
quadratures it would be natural to use a product approx-
imation and to replace representations of products with
products of representations. Applying the product ap-
proximation in this way yields an “ordinary” FBR for
the 1d kinetic energy operator above,

N-1
KPR = —(1/2) > Dmj{j|G|k)Dgn, (34)
j,k=0
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where

. d

Dmn:/ dz0,, ()

and (j|G|k) is evaluated by quadrature,

(jIG|ky = G3PF = Z 0;(24)*G(20)0k(Ta)wa/w(zs) = (TTGPVE
(36)
with
0j = VWa/w(2a)0;(za)*s  GZFT = G(za)das (37)

and w, a quadrature weight.

With a unit weight factor the derivative matrix D is
antihermitian if the basis functions 6, (z) are zero at xq
and z», the largest and smallest allowed values of the co-
ordinate. If D is antihermitian the product FBR Hamil-
tonian matrix K°FBE is hermitian. However, if D is
not antihermitian the product FBR Hamiltonian matrix
is not hermitian. Although an exact variational basis
representation (VBR) matrix (with no product and no
quadrature approximation) is hermitian, H°¥BE is not.

To obtain an hermitian FBR kinetic energy matrix by
invoking the product approximation one must write the
kinetic energy operator in the explicitly hermitian form
[36])-

= (/) ())& (38)
with
y . @ d\' d
K = (m|Kn) = (1/2) / i (2)* <£) G(r) by
(39)
-
where (L)t =L and the arrow denotes differentiation

to the left. If integrals are evaluated exactly then

Kpn = Knn (40)
because at 21 and zo either G(z;) = 0 or 6,(z;) =0 or
d‘ié’ (z;) = 0 and the surface term obtained when one
integrates by parts is zero. It is clear, therefore, that one
may replace K with K. We define the FBR of K as

KFBR _

(1/2)DIGFBED, (41)

where GFPE ig the matrix of G with elements evaluated
by quadrature. Both the exact VBR matrix K and the
FBR matriz KFBE obtained via the product approzima-
tion are hermitian. .

The DVR matrix is obtained from K by premultiplying
by T and postmultiplying by Tt

(),



KPVE = TKFBET = (1/2)TDIGYPEDT!

= (1/2)TD'TIGPVETDT! = (1/2)(DPVE)IGPVEDPVE,

(42)

where
DPVE = TDT!. (43)
Here KPVE is an explicitly hermitian operator. To cal-

culate the DVR of K it is not necessary to first calculate
KIBE KPVE ig computed without calculating GFBE,
without quadratures, without differentiating G matrix el-
ements, from the values of G(z) at the DVR points and
DPVE_ Note that although no quadratures are evalu-
ated to obtain the DVR, the quadrature approximation
is implicit in our assumption that GPYV# is diagonal. For
a multidimensional application of this DVR for compli-
cated kinetic energy operators see reference [36].

D. Symmetry Adapted DVR'’s

It is almost always advantageous to block diagonal-
ize the Hamiltonian matrix by exploiting symmetry.
(Note that for floppy molecules the permutation inver-
sion groups are more appropriate than space groups al-
though isomorphisms exist.) If basis functions are chosen
so that they transform like irreducible representations
of the group of the molecule being studied, matrix ele-
ments in off-diagonal blocks, connecting basis functions
of different symmetries, are zero. Block diagonalizing the
Hamiltonian matrix reduces the size of the matrices one
works with and aids assignment of energy levels. In this
section we shall discuss how to construct DVRs which
take advantage of such symmetry.

It is simplest to construct DVR basis functions adapted
to symmetry operations which affect just one coordinate.
Examples of such symmetry operations are: (i) the per-
mutation of homonuclear diatom nuclear labels in the
triatomic Jacobi Hamiltonian for a XY molecule (af-
fecting only ), (ii) space fixed inversion of a four-atom
molecule (affecting only the out-of-plane coordinate) (iii)
permutation of the identical nuclei of a XY molecule (af-
fecting only the antisymmetric Radau coordinate). For
such symmetry operations a method of devising a symme-
try adapted DVR was suggested by Whitnell and Light
[15]. They chose VBR functions which have the desired
symmetry properties and defined separate sets of DVR
functions for each symmetry by diagonalizing the VBR
of a symmetric operator. For example (i) above, one de-
signs a symmetry adapted DVR for the operation having
the effect § — 7 — 6 by separating symmetric (j — |m)|
even) and antisymmetric (j — |m| odd) associated Leg-
endre functions and diagonalizing cos®(#) separately in
the symmetric and antisymmetric basis sets to obtain
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separate sets of points (in the half-range (0,7/2) for the
symmetric and antisymmetric blocks. For example (i)
one diagonalizes cos¢ in a basis of cos(m¢) functions and
a basis of sin(mg¢) to generate points (in the half-range
(0,)) for each symmetry block.

Another (perhaps better) method to devise symme-
try adapted DVRs was first used by McNichols and Car-
rington [37] and Wei and Carrington [36]. Rather than
constructing symmetry adapted DVR functions as linear
combinations of symmetry adapted VBR functions they
suggested taking symmetry combinations of DVR func-
tions which do not have the desired symmetry properties.
For example (i) one would construct symmetry adapted
DVR functions by taking symmetric and antisymmetric
combinations of the DVR functions obtained by diago-
nalizing cos(f) in a Legendre basis. For example (ii) one
takes symmetric and antisymmetric combinations of the
DVR functions obtained by diagonalizing sin(¢/2) in the
[cos(md), sin(m¢)] basis. This method of devising sym-
metry adapted DVRs has the advantage that the sym-
metry adapted DVR functions for both symmetry blocks
are localized about the same values of the coordinate.
This simplifies calculating integrals of antisymmetric op-
erators between symmetric and antisymmetric functions.
The second method can also be used to to construct DVR
basis functions adapted to symmetry operations which
affect more than one coordinate. One simply takes linear
combinations of 1d DVR functions (without the symme-
try properties) to obtain new DVR functions with the
symmetry properties [36].

E. Sequential diagonalization/truncation or
adiabatic reduction

The DVR is a powerful tool because it facilitates multi-
dimensional calculations [13,14,38]. The simplest multi-
dimensional DVR basis is a basis each of whose functions
is a product of 1-d DVR functions for the separate de-
grees of freedom. This is a direct product DVR. Direct
product DVRs are useful for several reasons: (i) the po-
tential and functions of coordinates in the kinetic energy
operator are diagonal in the DVR and hence very easy to
construct (no integrals are computed) and use (for exam-
ple with iterative methods); (ii) for many molecules the
direct product DVR basis may be used to efficiently con-
struct more compact basis functions using the sequential
diagonalization/truncation method.

The structured sparseness of the DVR Hamiltonian
matrix can be exploited to generate in a sequential fash-
ion good contracted basis sets in an increasing number
of dimensions. The final result is a Hamiltonian ma-
trix expressed in an optimized contracted basis for all
dimensions. This approach, known as the ”sequential
diagonalization/truncation method” or ”sequential adi-
abatic reduction (SAR) method” was applied to large
amplitude vibrational motions of polyatomic molecules



by Bacic et al. [11-14] and has since been used in nu-
merous studies. It has the advantage that a relatively
large number of accurate eigenvalues and eigenfunctions
can be evaluated, even for "floppy” molecules in which
a basis of harmonic oscillator functions, for example, is
inadequate. It has the disadvantage that at each stage
of reduction the Hamiltonians for the reduced dimension
problems must be diagonalized.

The approach is most easily understood in terms of
adiabatic decompositions of the degrees of freedom, al-
though the SAR method does not actually use adiabatic
approximations. If we consider two orthogonal degrees
of freedom, and the motions in one coordinate, say vy,
are much lower frequency than those in x, then one is
tempted to use an approximate adiabatic decomposition
of the Hamiltonian and the solutions.

The approximate (not the SAR) adiabatic procedure
is as follows. Let the exact Hamiltonian be

H(z,y) = Ko + Ky + V(2,y) (44)

and find the solutions for x for fixed values of y:
Mazyy) = Ko + V(z,y) (45)
h(@; y)pn(@3y) = €nly)dn(z;y) (46)

Then the adiabatic approximation for the solutions is
obtained by solving for the y motion in the potentials
defined by the €,(y)’s:

(Ky + en ()05, (y) = A567.(y)

and the full wave function for an n,m state is approzi-
mated by

(47)

en,m ("E: y) = ernn (y) on (.T; y)

with energy A?. The error in this procedure, of course,
is that the kinetic energy operator in y is not allowed to
operate on the ¢, (z : y). However, if we use a DVR for y,
these terms may be included exactly (within the basis),
and simply.

If we are using a DVR for y and an arbitrary basis
for x, then at each y, the solutions for x of Eq. 46 are
obtained as a matrix of eigenvectors (a transformation
matrix), T%. The full Hamiltonian matrix can now be
transformed ezactly to this basis:

(48)

H2D

. 7
a,n;a’ ,m

= (7T ) (Ky)aar + €ndnmba,ar (49)

The adiabatic reduction is easily accomplished by
eliminating from this basis some of the eigenvectors of
h(z;ya) at some (or all) of the y,. This makes the trans-
formation matrices, T'* rectangular of dimension n, x ng
where n, is the number of basis functions in x, and n$ is
the number of eigenvectors retained at y,. A minimum
number of eigenvectors of h(z;y, ) are retained at each y,
(those with lowest energy). Some of the remaining eigen-
vectors of h(zx;y,) are usually eliminated on the basis of
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energy; with an energy cut-off of Ep,q4,14, those vectors
with €2 > Ep44,14 are discarded. It has been found
empirically and repeatedly [12,13,39] that convergence
of the final eigenvalues of multi-dimensional problems is
greatly enhanced by keeping all the localized DVR basis
functions available to the final states. If the energy crite-
rion alone is used to eliminate eigenvectors (of h(x,ys) in
this case), then for some y, all the eigenvalues of h(x,y,)
may lie above the cut-off, and the DVR function corre-
sponding to y, would be eliminated from the basis. This
has unfortunate consequences for accuracy. A better ba-
sis for the 2-D Hamiltonian is obtained by keeping 3 to 10
eigenvectors at each y, and using a lower cut-off energy
to limit the size of the resulting Hamiltonian matrix.

Obviously this process may be extended to higher di-
mension, and is used frequently for three dimensional
problems. In this case H?? would be evaluated as
above for each value of the third coordinate, say z,, the
two dimensional basis vectors would be truncated by an
Enaz,24 cut-off again keeping a minimum number at each
z point. The form of H3? is identical to that of H2P
above, with obvious substitution of the K, for K, and
the 2D eigenvectors and eigenvalues for those of the 1D
Hamiltonian in Eq. (49).

Although the CPU requirements and scaling depend on
the actual reductions used, one can get a general picture
of the scaling with n, the number of basis functions per
dimension (assumed equal for all dimensions), and the
truncation fraction, g = (1-f), 0 < f <1 (f = 1 means
no truncation). In d dimensions the basis size would be
n¢, and the diagonalization time would scale as n®¢. In
the SAR method, there are n~! diagonalizations of the
first coordinate, which itself scales as n®. Thus the time
for this scales as n?t2. After truncation, there are n?—2
diagonalizations of average dimension n?f. Thus the time
for this second set of diagonalizations scales as n?t4f3,
and so on. For 3-D, the CPU time for the third (and
last) diagonalization would scale as n°f®. The transfor-
mations (see Eq. (49)) also require amounts of computer
time comparable to the diagonalizations themselves. A
substantial savings in time can also be obtained if diag-
onalizations are carried out only at every third point in
some dimensions, and that basis, suitably truncated, is
used for neighboring points. The residual potential is,
of course, retained and transformed to the reduced basis
[39].

It should be noted that the general approach above is
not restricted to DVR bases. First, the representation
for the initial diagonalizations (of coordinate, x, above)
can be in any basis, one or higher dimensional. In a
number of problems coupled angular bases must be used
for some degrees of freedom, and, after diagonalization
of this basis at each DVR point, the adiabatic reduction
may be carried out as above. The initial SAR imple-
mentations [11,12] were with a distributed Gaussian ba-
sis coupled with a DVR. In the 6-D rigid water dimer
problem, as an extreme example, a 5-D coupled angular
basis is used together with a 1D DVR in the water-water



distance [40-42] to calculate the bound states accurately.

Bowman and Gazdy [43] noted that direct product
bases of any sort may lend themselves to a reduction
procedure as above; merely diagonalize the block diago-
nal components of the Hamiltonian corresponding to one
or more fixed basis functions (¢;(y) say), truncate the
eigenvector bases for each, and transform the Hamilto-
nian to this truncated basis. The reduced Hamiltonian
may then be diagonalized. In this approach (without a
DVR), however, the full potential matrix must be evalu-
ated.

F. Iterative methods

Methods for solving the time-independent Schrédinger
equation equation (whether designed to calculate S ma-
trix elements or spectra) are often impeded by the num-
ber of basis functions required for convergence. For ex-
ample, using a conventional time-independent method
one calculates a spectrum by diagonalizing a matrix rep-
resentation of the Hamiltonian; energy levels converge
from above (in the VBR) as the basis set is enlarged. To
calculate highly excited states of triatomic molecules or
more than a few levels for four-atom molecules one has to
diagonalize large matrices. Large matrices are difficult to
deal with for two reasons: (i) conventional diagonaliza-
tion algorithms explicitly modify the matrix as it is being
diagonalized and therefore require that it be stored in the
core memory of the computer (we presently know of no
conventional diagonalization calculations with matrices
larger than about 10000 x 10000); (ii) the cost of con-
ventional diagonalization algorithms scales as N3, where
N is the size of the matrix. [44]

To alleviate these problems one may either (i) devise
good basis functions which represent wavefunctions com-
pactly to minimize the number of basis functions (and the
size of the matrix) required to obtain converged energy
levels; (ii) use simple product basis functions and an it-
erative method which exploits the simplicity of the basis;
or (iii) use good (and therefore not simple) basis func-
tions and an iterative method. In the previous sections
we discussed in detail sequential diagonalization/ trun-
cation methods for devising good basis functions which
enable one to use conventional algorithms for solving the
time-independent Schrédinger equation equation. In this
section we shall discuss using DVRs with iterative meth-
ods.

To use an iterative method to compute eigenvalues and
eigenvectors of a matrix representation of the Hamilto-
nian, H, one does not need to store H; one merely needs
to store vectors and to evaluate the product of H with
a vector at each iteration of the recursion. If the basis
is a product basis (option (ii) above) each matrix-vector
product may be evaluated with a cost scaling as nf+!
where n is a representative number of basis functions
for a single degree of freedom, and f is the number of
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degrees of freedom. Most of the best methods for solv-
ing the time-dependent Schoedinger equation also obvi-
ate the need to store H and allow one to propagate by
computing matrix-vector products. [45]

1. Efficient matriz-vector products

If the basis is a product basis, each of whose functions
is a product of functions of a single coordinate, and the
Hamiltonian is factorizable, i.e., it can be written in the
form,

9
=y

=1k

(50)

ﬁ kl)

a sum of g terms each with f factors (for a single term no
more than two of the factors contain derivatives), then
it is always possible to evaluate matrix-vectors products
so that their cost scales as n/*!. Almost all kinetic en-
ergy operators have this factorizable form, and most have
fewer than f factors in each term. Owing to the factor-
izability of H and the product structure of the basis, a
matrix-vector product Hu = u’ is evaluated most effi-
ciently by doing sums sequentially [46-48] ,
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k) . .
where hg, ’ ii is an element of the n X n matrix representa-
k?

tion of the factor h(*¥)(g;) (involving a single coordinate)
and for simplicity we have assumed that the basis is a di-
rect product basis, i.e.,

= ¢i, (1) 9in (@2) - - - D3, (a5).

Note that for notational simplicity we have assumed that
there are n basis functions for each degree of freedom
but that this is not necessary. If the [th term has ¢
non-identity h(*s) matrices the number of multiplications
required to evaluate the matrix-vector product for that
term is ¢nf*!

The favorable nf*! scaling relation is not due the spar-
sity of the Hamiltonian matrix or to the sparsity of the
h(*9) matrices, it is not due to the absence of mixed
second-order differential operators, and it is not due to
choosing special single coordinate functions from which
to build the product basis functions. The nf*! scaling
relation is a result of using a product basis and having
a factorizable operator. [46] Note that if one evaluates
matrix-vector products by doing sums sequentially one
never actually calculates (or stores) matrix elements of
the Hamiltonian (not even on the fly): one uses matrix
elements of the factors of the terms of the Hamiltonian
to build up the Hamiltonian matrix-vector product. One

® (52)
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stores only (small) one-dimensional representations of the
factors.

Although matrix-vector products can be evaluated so
that their cost scales as nf*! regardless of whether one
chooses FBR or DVR single coordinate functions it is
often advantageous to choose DVR functions for three
reasons. First, if one uses DVR functions some of terms
in the Hamiltonian can be combined before computing
matrix-vector products so that the effective number of
terms for which matrix-vector products must be com-
puted is reduced. This is most obvious for the potential.
If matrix-vector products were evaluated for each term in
the potential separately the total cost of an iterative cal-
culation would depend on the number of potential terms
but in the DVR the entire potential can be treated as one
term, the number of terms is irrelevant and the cost of
the potential matrix-vector product scales as only n/. In
general, if two terms share the same non-diagonal h* ma-
trices (i.e., the same differential operators) they can be
added together prior to the matrix-vector multiplication.
Second, if one uses the DVR, multiplicative operators
need not be factorizable to attain n/*! scaling. Third,
since functions of coordinates the kinetic energy operator
are also diagonal in the DVR, then for each term there
are at most two non-diagonal h*) matrices. Neglecting
nf compared to nft!, evaluating a DVR matrix-vector
product for a kinetic energy term costs either n/*! or
2nf+1 depending on whether the term has derivatives
with respect to one or with respect to two coordinates.

2. Efficient FBR matriz-vector products

Sometimes it is preferable (see the section on nondirect
product FBRs below) to use an FBR rather than a DVR
basis. In the previous section we explained that using a
DVR basis enables one to combine all the terms of the
potential before evaluating matrix vector products. It
would be very costly to compute matrix-vector products
for each potential term separately but even in the FBR
this is not necessary. The best way to evaluate matrix-
vector products in the FBR is to use quadratures and to
evaluate sums sequentially. This technique is sometimes
referred to as the psuedospectral method. [49] Using the
psuedospectral method one can evaluate matrix vector
products for terms which are not factorizable at a cost
which scales as nf+1.

Consider the matrix-vector product for the two-degree
of freedom (unfactorizable) term,

1
= . 53
a’ +qi + ¢ (3
The above operator cannot be written as a product (or
a simple sum of products) of functions of a single coor-
dinate and it might therefore appear that the cost of the
corresponding matrix-vector product
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should necessarily scale as nf1?2 (in this case n*). How-
ever, if one introduces sums over the quadrature points
which would be required to compute the hz”l i iyiy iNtE-
gral and then does all of the sums sequentially one can
achieve n/*! scaling.

The integral

1
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where (¢1)q and (g2)s are quadrature points for the ¢
and ¢ coordinates, w, and wg are the corresponding
quadrature weights and w(q;) and w(gs) are the cor-
responding weight functions (which together with the
coordinate ranges determine the quadrature points and
weights).

In terms of the T matrices,

1
Ririr ivia (TT)", (T B :
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(58)

The matrix-vector product can now be written,
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B
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and doing the sums sequentially,
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the matrix vector-product is evaluated at a cost of 4n3
which scales as nf*!. Note that the hir iy iyi, integrals
are never actually computed.

Provided the basis is a product basis all matrix-vector
products can therefore be evaluated at a cost which scales
as nf*! (regardless of whether or not the Hamiltonian
or its terms are factorizable) using the pseudospectral
method or a combination of the pseudospectral method
and the DVR.
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3. Efficient matriz-vector products for nondirect product
and non-product representations

For some problems a direct product basis,

iy in, iy = Gin (q1)Bis (q2) -+ - Dy (a5),

for which matrix-vector products were discussed above, is
adequate. Often, however, it will be advantageous to use
either a product basis which is not a direct product basis
or to use a basis each of whose functions is not a product
of functions of a single coordinate. In this section we
discuss evaluating matrix-vector products for such basis
sets.

Before we explain how the matrix-vector products are
done efficiently we briefly address the question: why is it
useful to choose nondirect product or non-product basis
sets? The Lanczos algorithm is the most useful iterative
method for calculating a large number of energy levels.
The number of Lanczos iterations required to converge
energy levels of interest is strongly correlated to the spac-
ing of the close energy levels relative to the spacings of
the most widely separated eigenvalues of the Hamilto-
nian matrix: widely spaced energy levels are converged
first whereas bunches of closely spaced eigenvalues are
converged slowly. The Lanczos algorithm also tends to
preferentially converge eigenvalues at the top and at the
bottom of the spectrum of the matrix. For both these
reasons the Lanczos algorithm converges enthusiastically
for systems with very large, widely spaced energy lev-
els. Convergence is also poorer if the spectral range (the
difference between the largest and the smallest eigenval-
ues) of the matrix is large. [50] (The number of Cheby-
shev polynomials and hence the number of matrix-vector
products required to accurately propagate a wavepacket
using a Chebyshev series also directly depends on the
spectral range of the Hamiltonian matrix. [51])

If the Lanczos algorithm is used, as suggested by Cul-
lum and Willougby [50], without reorthogonalization of
Lanczos vectors, to calculate energy levels, the highest
(and usually widely spaced) eigenvalues of the Hamilto-
nian matrix converge first and as one iterates further they
are wastefully reproduced. Unfortunately the eigenval-
ues computed most easily by the Lanczos algorithm (the
largest) are often those one cares least about since they
may not be converged with respect to the basis size and
may not have physical significance. For many molecules
this problem is not really debilitating but it is exacer-
bated by any important singularities in the kinetic en-
ergy operator. An important singularity is one for which
the wavefunctions one wishes to calculate have significant
amplitude at points in configuration space at which the
kinetic energy operator is infinite. Because they magnify
the spectral range, singularities also make application of
most iterative propagation methods more difficult.

(61)
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4. Nondirect product representations

To deal with important singularities one chooses basis
functions to reduce the size of the kinetic energy matrix
elements and thereby reduce the spectral range of the
Hamiltonian matrix. Optimal basis functions may be
nondirect product functions which are eigenfunctions of
part of the Hamiltonian which includes the kinetic energy
term(s) with the singularity. We use the term nondirect
product function to mean a function which is a product
of functions of different coordinates but for which at least
one of the single coordinate functions is labeled not only
by the index for its coordinate but also by the index for
another coordinate, i.e., there is a shared index. The
most familiar example of a nondirect product basis func-
tion is a spherical harmonic: Yj, = O*(0)®,,(¢) with
m being the shared index. Singularities occur whenever
one coordinate takes a limiting value and another be-
comes undefined. If there is an important singularity
good basis functions are always nondirect product func-
tions which are products of functions (one with a shared
index) of the coordinate which becomes undefined and
the coordinate which takes a limiting value.

To evaluate the matrix-vector product efficiently for
basis functions which have the form f(q1)gm(g2) (m is
the shared index and the singularity occurs when ¢; takes
a limiting value and g2 becomes undefined) one uses the
pseudospectral sequential summation method described
above. There are two issues which require some thought.
(i) How should one order the factors in the nondirect
product equivalent of equation (59). (ii) Should one use
different sets of ¢; quadrature points for different values
of the shared index m or is it better to use the same
set of ¢; quadrature points for all values of m. If one
chooses to use different points for different values of m
it is clear that one should use the appropriate (m depen-
dent) Gauss quadrature points for the polynomial asso-
ciated with f7(q1). If, on the other hand, one choose
to use the same ¢; quadrature points for all values of m
what points should one choose?

The nondirect product basis functions will usually be
eigenfunctions either of part of the kinetic energy opera-
tor or of the sum of part of the kinetic energy operator
and part of the potential and therefore the only nontriv-
ial matrix-vector product will be for the potential or for
part of the potential. One may always attain n/*! scal-
ing by choosing the same set of ¢; quadrature points for
all values of m.

If one chooses m independent points the quadrature
approximation for the integral

Vot som = / dardgn £ (01)gme (@) (a1, @) £ (@1)gm(a2) (62)
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where (¢1)a and (g2)s are quadrature points for the ¢
and g2 coordinates, w, and wg are the corresponding
quadrature weights and w(q;) and w(q2) are the corre-
sponding weight functions. In terms of the T matrix

elements,
az - [_“B
([ ]T)[-},m = U)(((h)ﬁ)gm((th)ﬁ), (65)
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the potential integral is,

Vn’m’,nm ~ Z Z(([th]Tm')f)
a B

(67)

where for clarity we have indicated at the left of each T
whether it is for ¢; or g2. As the notation implies there
is a different [71]7™ for each value of m (because there
is a different set of ¢; functions for each m).

The matrix-vector product can now be written,

ST 0 ST eV (1) <q2)ﬂ)2<[qﬂT>ﬁ,mz([m4m

a m

5
(68)

Note that because u,,, on the left hand side is indexed
by m the fact that the matrix elements ({17™), , are
indexed not only by a and n but also by m does not mean
that the result of the summation En([‘11]T’”)a,nunm is
labelled by more indices than would be necessary if the
T matrix elements were independent of m. The sum over
n yields a vector labelled by «, and m (and costs n3%. It
the [T matrix were placed to the right of the [a1l7m™
matrix the matrix-vector product would be more costly
because one could not sum over the elements of one T
matrix, store the result, and then sum over the elements
of the second T matrix (because both are labelled by m).
To attain nf*! scaling the T matrices whose elements
are labelled by three indices should therefore be on the
outside.

We must still consider the choice of the m independent
g1 quadrature points. For each value of m the f]* func-
tions are products of polynomials and the square root
of a weight function and the polynomials are associated
with Gauss quadrature points. What (fixed) value of
m should one choose to determine the m independent
points? Clearly the value of m should be chosen so that
the associated quadrature accurately approximates the
potential and overlap integrals. Regardless of what m is

\/w((q2)ﬁ)
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chosen it will almost always be true that some potential
integrals will not be exact but it is important to choose
the fixed value of m for which ¢; Gauss quadrature points
are determined so that all overlap integrals (for all val-
ues of m) are exact. If overlap integrals were not exact
one would have to take a non-unit overlap matrix into
account.

Examples of important f7*(q;) functions are Jacobi
basis functions and spherical oscillator functions. Each
function is proportional to the product of a polynomial
and the square root of a weight function,

f?gn((h) X wm(ql)pn,m(ql)a (69)
where w™(q;) is the weight function with respect to
which the polynomials pp ., (¢1) are orthogonal. In the
Jacobi case with a = b=m, w™(q1) = (1 — (g1)*)™ and

pn,m(ql) = P(m’M)

L~ nem
overlap integral is,

a Jacobi polynomial. In general, the

w0 (BT 5V ((@1)as (42)5) (PIT™) o (21T) 1,

dgydgs fI (1) gm (a2) £ (41) g (22)- (70)
= [ a7 @) £ @0 (71)
which is proportional to
dqlwm (ql )pn,m (QI)pn’,m (ql)(sm,m’ (72)
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It 18 simple to rewrite the above integral as

/d‘hwmﬁm (QI)[ wm(ql))]pn,m(QI)pn’,m(ql)(sm,m’ (73)
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where my;, is a chosen, fixed value of m. This integral
can be evaluated exactly by the Gauss quadrature as-

sociated With Pom,., (61) if [zt 1Pn,m (41)Parm (1)
is a polynomial of finite degree. Therefore, if the weight
function ratio R = [ﬁ;i(f(lq)l)] can be written as a polyno-
mial of finite degree, i.e., if my;, is the smallest possible
value of m, the overlaps integrals can be evaluated ex-
actly with the g1 quadrature appropriate for m = my;;.
If polynomials are chosen so that the degree of the weight
function ratio, R, increases by the same amount that the
degree of pn,m(q1)pn,m(q1) decreases as m is increased
(so that the degree of the integrand of Eq. (73). does
not depend on the value of m) then the quadrature for
Mtiz = Msmailest Will do all of the overlap integrals cor-
rectly. Corey and Lemoine [33] were the first to point
out the importance of choosing the points for mgsmaiest
if m independent points are used.

Note that although it is possible to choose one set of
quadrature points to evaluate all the overlap integrals ex-
actly it may not, in general, be possible to use one set
of quadrature points to evaluate overlap integrals and all
the potential matrix elements accurately. For example, if



one uses spherical harmonic basis functions up to jmaz,
all the 2-D overlap integrals are evaluated exactly using
(2jmaz +1) Fourier points in ¢ and jma.+1 Gauss Legen-
dre (m = 0) points in 0. (Note that (2jmaez +1)(Jmaz +1)
points are required to compute the overlap integrals for
(jmaz + 1)? basis functions.) However, if one wishes to
calculate a potential integral such as (z = cos(6) ,

/ 2§ (6) cos(ma) cos() cos(im'd)Opm (6) (74)

it is necessary to calculate,

/ 4201 (0)Orms1 (6) (75)

which is difficult to evaluate accurately with a Gauss Leg-
endre quadrature because

/ dz20m (2)Op iy (2 / dz(1—22)/2 (1 —

(76)

and (1 — 2%)(*/?) is not a polynomial in z. To evaluate
such an integral (off-diagonal in m) one would need a
Gauss Jacobi (with a = b = 1/2) quadrature. With
spherical harmonic basis functions an a = b = 1/2 Gauss
Jacobi quadrature will be required to evaluate integrals
of cos(ng) sin(n'd) where n +n' is odd.

Consider now the question: is it necessary to choose
m independent ¢; points to attain nf*t! scaling? To cal-
culate Vs pm one might, for example, choose either
different ¢; quadrature points for each (m,m') pair or
different ¢; quadrature points for each m’. In either case
at least one ¢; T matrix would depend on both m and
m' and to calculate the matrix-vector product one would
be obliged to evaluate sums such as,

Z([ql]Tm’ml)a,nunm = W mim (77)

n

the cost of which scales as n* (and in general as nf12).
If, however, Viym/ nm X Omm one can use different ¢
quadrature points for each value of m without jeopar-
dizing the nf*! scaling relation. This is the case, for
example, for the bending basis functions for a triatomic
molecule. The bending basis functions depend on the
index for the body-fixed component of the angular mo-
mentum but the potential does not depend on the Eu-
ler angles and one may therefore use different sets of ¢;
quadrature points with impunity.

The use of the underlying direct product angular DVR
(based on Legendre (m=0) polynomials and a Fourier
grid in ¢) instead of spherical harmonics was examined
by Dai et. al. [52]. In the direct product DVR with
the above set of points the j2 operator was diagonalized.
As expected from the above analysis, the lowest eigen-
values for even values of m are given exactly since the
exact associated Legendre eigenfunctions (m even) can

be represented exactly by Legendre polynomials (m =
0). For odd m values, however, the eigenvalues converge
to the exact values slowly (m = 1 being the slowest to
converge). The exact eigenfunctions for m odd cannot
be given exactly in a finite basis of Legendre polynomi-
als. For angular scattering problems, however, this direct
product angular DVR was shown to be quite accurate.

5. Using Lanczos with sequential diagonalization/truncation

We have discussed in detail evaluating matrix-vector
products because the efficacy of several of the best meth-
ods for solving the time-dependent (e.g., Chebyshev and
Lanczos propagation schemes) and the time-independent
(e.g., Lanczos’s and Davidson’s algorithm [53]) methods
for solving the Schrodinger equation equation is contin-
gent on the efficiency of matrix-vector products. If one

2%)m P(m m) Pjse*sla{pféﬂuct basis (it may be either a nondirect or a di-

fect product basis) matrix-vector products can always be
evaluated at a cost which scales as nf*!. The nf*! scal-
ing relation is attained by exploiting the special structure
of the product basis and evaluating summations (over
basis set or quadrature indices) sequentially. If one were
not able to exploit the structure of the basis and had to
do the sums sequentially, the cost of the matrix-vector
product (for an nf x nf matrix) would scale as n?f. Al-
though n/t! is certainly favourable compared to n?f it
is nevertheless clear that as f (or n) increases the cost of
the matrix-vector product calculation will become pro-
hibitive. In addition, although iterative methods obviate
the need to store a Hamiltonian matrix one does need
to store vectors, with as many components as there are
basis functions, and eventually, as f (or n) is increased,
one finds that the core memory of the computer is not
large enough to do so. To mitigate both these problems
it is natural to consider using iterative methods with ba-
sis functions which represent wavefunctions or wavepack-
ets more compactly (so that one will require fewer basis
functions than would be needed if product basis func-
tions were used). If fewer basis functions are required
one will surely have less to store and it might appear that
the cost of each matrix-vector product should also be re-
duced. Basis functions obtained from the sequential diag-
onalization/ truncation method of Light and co-workers
are excellent and might fruitfully be combined with it-
erative methods. In this section we discuss using DVRs
to evaluate matrix-vector products for non-product basis
functions.

It is clear that using a more compact basis will re-
duce storage requirements. Although one might expect
that using a compact basis should somehow reduce n and
hence the cost of each matrix-vector product, compact-
basis matrix-vector products are actually more and not
less expensive than product-basis matrix-vector prod-
ucts. They are more expensive because the nf*! scaling
relation is due to the simplicity of the product basis: bet-



ter basis functions are necessarily more complicated (the
structure of the basis is less simple) and the correspond-
ing matrix-vector products are more costly. The memory
advantage of better basis functions is manifest but, if one
considers only the cost of a single matrix-vector product
it appears that using better basis functions may increase
(and not decrease) the computer time required. However.
the cost of an iterative calculation depends not only on
the cost of a matrix-vector product for a single term but
also on the number of times the Hamiltonian must be
applied to a vector (either to converge a series represen-
tation of the evolution operator or to converge the de-
sired energy levels) and the effective number of terms for
which matrix-vector products must be evaluated for each
application of the Hamiltonian. For energy level calcu-
lations, sequential diagonalisation /truncation basis func-
tions will, in general, not only reduce memory require-
ments but also make Lanczos calculations more efficient.
This was first exploited by Wu and Hayes [54,55]. For
many molecules a sequential diagonalisation/truncation
basis Lanczos calculation is more efficient than its prod-
uct basis counterpart because (i) using a better basis re-
duces the spectral range of the Hamiltonian matrix and
uniformizes the gaps between neighbouring eigenvalues
and thus decreases the number of iterations required to
converge the energy levels of interest and (ii) sequential
diagonalisation/truncation basis functions can be chosen
so that only one term in the Hamiltonian is not diagonal
and therefore so that only one nontrivial matrix vector
product must be evaluated.

We define the primary representation as the represen-
tation in which the iteration is performed (i.,e, the rep-
resentation in which the wavepacket is propagated or the
representation in which wavefunctions are computed).
To efficiently evaluate matrix-vector products for a se-
quential diagonalisation/truncation primary representa-
tion one uses matrices (much like the quadrature T ma-
trices of section ) to transform between the sequential di-
agonalisation /truncation representation and a represen-
tation in which matrix elements of Hamiltonian terms
can be computed easily and inexpensively. For this (sec-
ondary) representation it is usually best to choose a DVR.
The number of labels on the transformation matrices and
the number of values each label assumes determine the
cost of the sequential diagonalisation/truncation matrix-
vector products. The more refined the sequential diago-
nalisation/truncation basis is the greater the number of
labels on the transformation matrices.

Consider first the matrix-vector product for a triatomic
sequential diagonalisation/truncation basis of the type
discussed in section . We label functions of ¢; and g» ob-
tained by diagonalizing a two-dimensional Hamiltonian
for each DVR point « for coordinate g3 by the index j.
If the two-dimensional Hamiltonian is diagonalized in a
direct product g; g2 basis and a and 8 are DVR labels
for ¢; and ¢ DVR basis functions then the matrix of
eigenvectors is the transformation matrix, CZB, i (In-
stead of diagonalizing the two-dimensional Hamiltonian
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in a direct product DVR basis one might use products of
optimised 1d functions for ¢; and DVR functions for ¢,
reference our paper.) In a basis of functions labelled by j
and ~y the Hamiltonian (written in Radau, symmetrized
Radau, or Jacobi coordinates) matrix elements are,

(§"Y'|H|i7) = E]6j1j6yy + Y Cog joilriar2p)ly2Chp
aB

(78)

where, p is an inverse moment of inertia function and {,,
is a DVR matrix element of an operator proportional to
8‘9—922 + cot 6%.

In this representation applying the Hamiltonian to
a vector implicates only one non- trivial matrix-vector
product. When sums are evaluated sequentially the cost
of the matrix- vector product,

Z Cgﬁ,j’”(rlarw) Z Lyry Z Cgﬁ,j“'vj (79)
aﬁ ¥ ]

scales as 2(njnanpn. ) +n2nang+nongn.. Ifn, =ng =
n, = n and it were necessary to retain all n> eigenvectors
of the two-dimensional Hamiltonians then the cost would
scale as n° (and in general as n?/~1). This should be
compared to the cost of the product-basis matrix-vector
product, n*!. Clearly, if at each stage of the sequen-
tial diagonalisation procedure it were necessary to retain
all the eigenvectors of the reduced dimensional Hamil-
tonians the sequential-diagonalisation and the product
matrices would have the same eigenvalues (same spec-
tral range, same gap structure) and the same number
of iterations would be required for both representations
and it would be much more expensive to use the sequen-
tial diagonalisation basis. However, the utility of the
sequential-diagonalisation basis is derived from the trun-
cation and if it is truncated one reduces both the cost of
each individual matrix-vector product and the number
of iterations required. For the three dimensional exam-
ple, if n; is reduced from n? to n (by retaining only n
of the n? eigenvectors of the two-dimensional Hamilto-
nians) the cost of each matrix-vector product is reduced
from n® to n*. The cost of product-basis matrix-vector
product also scales as n* but because the spectral range
and/or gap structure of the sequential-diagonalisation
basis are much more favourable the number of required
iterations is reduced and the calculation is less costly.
If the number of required iterations is large and trunca-
tion enables one to reduce n; significantly it might be
advantageous to multiply the C 1 C matrices prior to it-
erating. Although it is not possible to know a priori how
effective the sequential diagonalisation procedure will be
(how much one will be able to truncate) it seems clear
that for Lanczos calculations of energy levels the sequen-
tial diagonalisation-Lanczos method will, for many, but
not all, triatomic molecules, be more efficient than the
product basis-Lanczos method. [56,57]



For molecules with four or more atoms the advantages
of the sequential diagonalisation basis are even more con-
vincing: as the number of degrees of freedom increases
it becomes more and more important to reduce the size
of the product basis and to exclude poor (unimportant)
functions from the basis.

The best contracted basis functions are obtained from
a contraction scheme which involves diagonalizing re-
duced dimensional Hamiltonians whose dimension is al-
most as large as the original Hamiltonian. Unfortu-
nately the larger the dimension of the reduced dimen-
sional Hamiltonian the more costly the matrix-vector
product for the associated contracted basis. This has
motivated Antikainen et al. [58] to develop a sequential
diagonalization/ truncation Lanczos method using less
than optimal basis functions but basis functions which
allow one to evaluate matrix-vector products efficiently.
Each of the contracted basis functions of Antikainen et al.
is obtained by diagonalizing a one-dimensional Hamilto-
nian for fixed values of indices of other basis functions.
Because their basis functions are eigenfunctions of one-
(and not multi-)dimensional reduced Hamiltonians the
cost of each matrix-vector product is reduced. Such a
scheme seems very promising for molecules with more
than three atoms.

The cost of the sequential diagonalisation matrix-
vector product can also be reduced (at the price of de-
creasing the quality of the basis functions and hence in-
creasing the number of basis functions and the number of
iterations required to converge), while using multidimen-
sional basis functions, if eigenfunctions of the reduced
dimension Hamiltonian are not recomputed for all the
values of the DVR index for the lowest-frequency degree
of freedom. [57,39] For example, for a triatomic molecule,
rather than choosing a new set of (r1,r2) functions for
every # DVR function one could use one set of (r1,r2)
functions computed for (say) the equilibrium value of 6.
This reduces the number of integrals to calculate in the
contracted basis, but more importantly it reduces the
number of labels on the C matrix and hence allows one
to construct (explicitly) a matrix representation of u la-
belled by only two indices so that the cost of the matrix-
vector product is reduced. Alternatively, for every third
value of 6 one might compute the contracted basis in
(r1,r2) and use this basis also for the two neighboring
values of 8. Please see references [57,39] for details and
numerical tests.

IV. CAVEATS

In any approach to the numerical solution of complex
problems, many opportunities for subtle errors exist, and
DVR methods are no exception. Since DVR’s are ba-
sis representations, the common problems of convergence
with basis size, etc. all occur in DVRs. There are ad-
ditional somewhat subtle problems, however, associated
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with DVR’s which are usually not encountered with nor-
mal basis representations and which must be considered.
They are associated with quadrature error versus con-
vergence (variational) error; criteria for basis set reduc-
tion (particularly in the sequential adiabatic reduction
approach), and questions of boundary conditions and
ranges which may not be so obvious in DVR’s.

A. Boundary conditions and ranges, symmetries

In general, all DVR’s are defined in terms of some basis
set which spans some range and satisfies certain bound-
ary conditions. The underlying basis for the DVR should
be appropriate to the problem and to the operators being
used. As discussed below, the use of DVR’s correspond-
ing to bases satisfying the wrong boundary conditions
can lead to substantial and persistent quadrature errors.

Since DVR’s are useful primarily for multi-dimensional
problems in which solutions spanning a rather large re-
gion of space are desired, assuring that the DVR’s span
the appropriate range with an appropriate density of
points is a major concern. In particular, if the range
of interest in one coordinate varies substantially with the
value of another coordinate, then the range of the DVR
basis must span the entire range. One way of assuring
this is to find the minimum of the potential for one co-
ordinate (say x) as the others (say y and z) are varied.
This defines a one dimensional ” global minimum” poten-
tial for x, Vg(x). The same can be done for the other
coordinates. These ”global minimum” potentials define
the ranges required for each coordinate in order to repre-
sent the system up to given energies, and DVR’s can be
chosen in each coordinate to satisfy this. These ”global
minimum” potentials are also the potentials of choice in
defining potential optimized DVR’s (PODVR’s) since the
PODVR points will then span the appropriate range.

When convergence of DVR bases is checked, both the
density of DVR points (which affects the quality of the
quadratures) and the range of the DVR points (if it can
vary) must be considered separately.

B. Quadrature error and variational error

Since DVR’s are closely related to numerical quadra-
tures and contain inherent quadrature approximations,
their accuracy depends on the size of the DVR basis (for
a given range) in two ways: the accuracy of the quadra-
ture increases (the quadrature error decreases) as the ba-
sis is increased, and the variational error due to the finite
basis size also decreases. The variational error is always
positive, i.e. the convergence to eigenvalues of the Hamil-
tonian is from above. However, the quadrature error can
be of either sign, depending on the potential and the type
and size of the DVR, but should decrease in magnitude
as the basis size is increased.



We have often observed that the quadrature error
causes negative errors in the calculated energies. (The
sign may be due to the common existence of regions of
large repulsive non-polynomial potentials.) If this is the
case, then one often observes first increases in the energy
levels with basis size as the quadrature error decreases
faster than the variational error, then for some range of
basis size, increases in the basis size make changes of com-
parable magnitude in the quadrature error and the varia-
tional error, leading to very stable, but not quite accurate
results, and finally the quadratures become very accurate
and the reduction of variational error causes convergence
from above for very large basis size.

Another tempting, but questionable, practice is to re-
place infinite integrals with finite quadrature results. Ki-
netic energy and effective potential terms often contain
repulsive singularities; the repulsive effective potentials
from angular momentum are the most common. Since
these singularities exclude the wave functions in any case,
one is tempted to use a DVR for which the quadrature
points miss the singularity and thus ignore the problem.
This may lead to very slow convergence and not neces-
sarily to the correct answer. The best way to treat such
situations is to use as a basis functions which have the
correct boundary conditions and in which the singular
operators are treated exactly.

The most common example is the singularity of the
angular momentum operator in polar coordinates at § =
0, 7. The matrix elements of the angular momentum op-
erator are finite in a basis of spherical harmonics, con-
taining associated Legendre polynomials. If only Legen-
dre polynomial (m=0) basis functions are used the exact
matrix elements of the angular momentum operator are
infinite. However, because a Legendre polynomial DVR
has no points at 0,7, the quadrature approximations to
the integrals are always finite, i. e. the quadrature error
is infinite! If the wavefunction amplitude is very small
near the singularities, then the error in energy may not
be large, but it will be persistent, e.g. for m = 1 the
eigenvalues of the j? operator converge very slowly as
the Legendre DVR basis size is increased. Thus it may
be better to forego the pleasures of a DVR in these cases,
and use (usually non-direct product) variational bases for
these degrees of freedom. The use of both the DVR, and
non-direct product bases were discussed above.

C. Truncation of primitive DVR’s

Another, perhaps more subtle, problem has to do with
the truncation of primitive DVR’s in multi-dimensional
problems. In using direct product DVR’s in several di-
mensions, there are always DVR points located in regions
of space where the wave functions of interest will be very
small; regions of very large repulsive potentials being the
most common. It is tempting to eliminate such points
from the DVR basis in order to reduce both the size of
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the basis and the spectral range of the Hamiltonian op-
erator. However, DVR basis functions are not truly lo-
calized, and kinetic energy operators in DVR bases give
long range coupling. Thus, as indicated above, it is best
not to eliminate DVR points themselves, but to permit all
DVR points to mix in the eigenfunctions (at a given level)
and then to eliminate high energy functions if desired to
reduce the basis size. This means that in sequential re-
duction procedures, an energy criterion alone should not
be used to eliminate functions at intermediate levels, but
a minimum number of functions should be kept at each of
the DVR points being considered explicitly in the basis.
In the case of the sinc function DVR’s, however, explicit
truncation must be made since the basis is always infi-
nite.

V. SUMMARY AND CONCLUSIONS

The DVR has had an enormous impact on the way
we calculate vibrational spectra, rate constants, state-to-
state transition probabilities, and other properties which
characterize the motion of atoms in or between molecules.
To calculate spectra, rate constants, etc one almost al-
ways proceeds by choosing basis functions, calculating in-
tegrals, and solving a linear algebra problem. The most
important and the most striking advantage of the DVR is
that it drastically simplifies the calculation of integrals:
in the DVR matrix elements of functions of coordinates
do not need to be calculated at all because matrix rep-
resentations of functions are diagonal and the diagonal
elements are simply values of the function. Because the
DVR obviates the need to calculate integrals it signifi-
cantly simplifies most dynamical calculations.

It is easy to construct a DVR Hamiltonian matrix for a
one-dimensional problem. There is no need to master the
details of Gauss quadrature or finite difference methods
to use the DVR. To construct a DVR Hamiltonian matrix
one must merely (i) choose a VBR basis set, 8;(z) (e.g.,
harmonic oscillator functions with z =  — z. or Legen-
dre functions with z = cos(6)); (ii) diagonalize z in the
VBR basis set; (iii) form the potential matrix by build-
ing a diagonal matrix whose diagonal elements are V' (z,),
where the z, are the eigenvalues of the VBR 2z matrix;
(iv) form the kinetic energy matrix by transforming the
VBR kinetic energy matrix with the eigenvectors of the
z matrix. It is easy! The most straightforward way to
handle multidimensional problems is with direct-product
DVRs.

To use the DVR is one thing; to understand why it
works is another. The DVR Hamiltonian matrix is NOT
unitarily equivalent to the VBR Hamiltonian matrix.
VBR and DVR eigenvalues are not equal. Instead, the
DVR Hamiltonian matrix is unitarily equivalent to the
FBR Hamiltonian matrix. FBR and DVR eigenvalues
are equal. Since one would like to have the VBR eigen-
values, but the advantages of the DVR enables one to



compute DVR eigenvalues easily, one wants to know why
the DVR and VBR eigenvalues are different and how dif-
ferent they are. DVR and VBR eigenvalues are different
simply because the FBR and the VBR are not identical.
The FBR may be thought of in two ways. If the VBR
basis functions are classical polynomial functions (e.g.,
simple harmonic oscillator functions) the FBR may be
thought of as the representation in which potential ma-
trix elments are computed with a Gauss quadrature with
as many quadrature points as basis functions. The FBR
may also be thought of as the representation obtained by
replacing matrix representations of products with prod-
ucts of matrices. The difference between DVR (or FBR)
and VBR eigenvalues becomes smaller and smaller as the
size of the basis is increased. In general, near the top of
the spectrum a few of the DVR eigenvalues will be sig-
nificantly in error but most eigenvalues are essentially
exact.

The DVR is simply an alternative representation. A
matrix representation is obtained from a set of basis func-
tions. Like any representation the DVR is associated
with a set of basis functions. The DVR basis functions
are linear combinations of the VBR basis functions, cho-
sen so that the DVR functions diagonalize the coordi-
nate matrix. The basis functions are localized about the
eigenvalues of the coordinate matrix, the "DVR points”.

The most obvious and striking advantage of the DVR
is that it eliminates the calculation of integrals. It has
other advantages. (i) The use of the DVR facilitates the
construction of good contracted basis functions. For ex-
ample for a triatomic molecule one can devise an excel-
lent basis using the sequential diagonalization truncation
method. Although it is possible to use other (non-DVR)
functions to build a contraction schemes it is often true
that it is best to form different functions of g2, g3, ---
for each DVR function localized about a ¢ point. (ii)
Because DVR functions are localized it is sometimes pos-
sible to discard DVR functions localized about points in
configuration space for which the potential is high (see
however the discussion in reference [46]). (iii) The DVR
facilitates the use of iterative methods (e.g., Chebyshev
expansions of the time evolution operator or the Lanczos
method to calculate spectra) because it reduces the ef-
fective number of terms in the Hamiltonian and increases
the number of diagonal terms.

One potential disadvantage of the DVR is that it works
best if the VBR basis functions are classical polynomial
functions but it might not always be efficient to choose
such functions. The accuracy of the DVR eigenvalues is
equivalent to the accuracy of FBR eigenvalues which is
determined by the accuracy of the product approxima-
tion used to construct the FBR potential matrix. If one
uses N classical polynomial functions as a basis, FBR
matrix elements (6 (2)]2?|0k (2)) with £ = 0,1,--- N are
exact if k + k' +d < 2N + 1. If one uses VBR functions
which are not classical polynomial functions one will in-
crease the number of FBR matrix elements which are not
exact. Nonetheless it is often worth accepting this dis-
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advantage in order to decrease the dimension of the ma-
trices. If classical polynomial basis functions are poor in
the sense that many of them are required to represent the
wavefunctions one wishes to calculate it is better to use
basis functions adapted to the potential. For example,
rather than using Legendre functions and the associated
DVR for a bending angle it is often better to use eigen-
functions of the one-dimensional bending problem and a
PODVR.

As is the case with any representation it is useful to
have basis functions which transform as irreducible rep-
resentations of the appropriate symmetry group. Two
ways of obtaining symmetrized DVR functions have been
described in this article: one can obtain symmetrized
DVR functions either (i) by taking linear combinations
of symmetrized VBR functions or (ii) by taking sym-
metrized linear combinations of DVR functions obtained
from VBR functions which do not transform like irre-
ducible representations.

Despite the benefits of the DVR it is sometimes true
that it is better to use the FBR. This is true for example
if (multidimensional) non-direct product VBR, functions
are ideal basis functions. In this case it is difficult to
devise a good DVR and one is better off using direct
product or product quadratures.

The DVR will continue to dominate the way theorists
calculate spectra, photodissociation cross sections, rate
constants etc. Earlier theoretical methods were mostly
based on models for which matrix elements could be com-
puted analytically. More and more, at least for small
molecules, it is possible to use realistic but complicated
potential functions or interpolations for which matrix el-
ements cannot be computed analytically. The DVR en-
ables one to use such potentials without needing to com-
pute difficult integrals. New methods which will be de-
veloped to couple exact quantum calculations and ap-
proximate classical or semi-classical approaches to han-
dle more complex problems will also surely exploit the
advantages of the DVR.
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